[1] M. A. Abdou, A. A.Badr, M. Basseem, On a method for solving a two dimensional nonlinear integral equation of the second kind, J. Comp. Appl. Math.nm 235 (2011) 3589-3598.
[2] M. A. Abdou, W. G. El-Sayed, E. l. Deebs, A Solution of a nonlinear integral equation, J. Appl. Math. Comp. 160 (2005) 1-14.
[3] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, PA (1976).
[4] Z. Avazzadeh, M. Heydari, Chebyshev polynomial for solving two dimensional linear and nonlinear integral equations of the second kind, J. Comput. Appl. Math. 31 (2010) 127-142.
[5] L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, New York, (1985).
[6] O. Diekman, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol. 6 (1978) 109-130.
[7] M. A. FariborziAraghi, S. Noeiaghdam, Validation of Numerical Algorithms: Stochastic Arithmetic, EntekhabBartar Publisher, Iran (2021) ISBN: 978-622-6498-09-8.
[8] M. A. Golberg, Numerical Solution of Integral Equations, Plenum Press, New York (1990).
[9] L. Hacia, On approximate solution for integral equations of mixed type, ZAMM. Z. Angew. Math.Mech. 76 (1996) 415-416.
[10] L. Hacia, On approximate solving of the fourier problems,Demonstration Math 12 (1979) 913-922.
[11] P. Huabsomboon, B. Novaprateep, H. Kaneko, On Taylor-series expansion methods for second kind integral equations, J. Comput. Appl. Math. 234 (2010) 1466-1472.
[12] P. J. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56 (1989) 409-424.
[13] F. Ling, F. R. Lin, A fast numerical solution method for two-dimensional Fredholm integral equations of the second kind based on piecewise polynomial interpolation, Journal of Applied. Mathematics Computer 216 (2010) 3073-3080.
[14] k. Maleknejad, N. Aghazadeh, Numerical solution of volterra integral equations of the second kind with convolution kernel by using Taylor series expansion method, Appl. Math. Comput. 161 (2005) 915-922.
[15] N. Mikaeilvand, S. Noeiaghdam, Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel Kernel, Int. J. Industrial Mathematics, (2014).
[16] A. S. Noeiaghdam, M. A. FariborziAraghi, S. Abbasbandy, Valid implementation of Sinccollocation method to solve the fuzzy Fredholm integral equation, Journal of Computational and Applied Mathematics (2020) 112632.
[17] B. G. Pachpatte, On mixed VolterraFredholm type integral equations, Indian J. Pure Appl. Math. 17 (1986) 488-496.
[18] K. Ren, B. Zhang, H. Qiao, A simple Taylorseries expansion method for a class of second kind integral equation, J. Comput. Appl. Math. 110 (1999) 15-24.