[1] S. P. Roger, R. M. Bruce, Software engineering: a practitioner’s approach, McGraw-Hill Education, (2015).
[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation computer systems 25 (2009) 599-616.
[3] R. Buyya, J. Broberg, A. M. Goscinski, Cloud computing: Principles and paradigms, John Wiley & Sons, (2010).
[4] A. Jula, E. Sundararajan, Z. Othman, Cloud computing service composition: A systematic literature review, Expert systems with applications 41 (2014) 3809-3824.
[5] M. B. Karimi, A. Isazadeh, A. M. Rahmani, QoS-aware service composition in cloud computing using data mining techniques and genetic algorithm, The Journal of Supercomputing 73 (2017) 1387-1415.
[6] F. Liu, NIST cloud computing reference architecture, NIST special publication 500 (2011) 1-28.
[7] S. K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing ser vices, Future Generation Computer Systems 29 (2013) 1012-1023.
[8] K. P. Joshi, Y. Yesha, T. Finin, Automating cloud services life cycle through semantic technologies, IEEE Transactions on Services Computing 7 (2012) 109-122.
[9] S. A. Baset, Cloud SLAs: present and future, ACM SIGOPS Operating Systems Review 46 (2012) 57-66.
[10] M. Teixeira, R. Ribeiro, C. Oliveira, R. Massa, A quality-driven approach for resources planning in service-oriented architectures, Expert Systems with Applications 42 (2015) 5366-5379.
[11] A. S. da Silva, H. Ma, M. Zhang, Genetic programming for QoS-aware web service composition and selection, Soft Computing 20 (2016) 3851-3867.
[12] F. Tao, D. Zhao, Y. Hu, Z. Zhou, Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system, IEEE Transactions on industrial informatics 4 (2008) 315-327.
[13] M. Alrifai, T. Risse, W. Nejdl, A hybrid approach for efficient Web service composition with end-to-end QoS constraints, ACM Transactions on the Web (TWEB) 6 (2012) 1-31.
[14] V. Hayyolalam, A. A. P. Kazem, A systematic literature review on QoS-aware service composition and selection in cloud environment, Journal of Network and Computer Applications 110 (2018) 52-74.
[15] Z. Ye, X. Zhou, A. Bouguettaya, Genetic algorithm based QoS-aware service compositions in cloud computing, International Conference on Database Systems for Advanced Applications 13 (2011) 321-334.
[16] F. Moscato, N. Mazzocca, V. Vittorini, G. D. Lorenzo, P. Mosca, M. Magaldi, Workflow pattern analysis in web services orchestration: The BPEL4WS example, International Conference on High Performance Computing and Communications 15 (2005) 395-400.
[17] J. Huang, Q. Duan, S. Guo, Y. Yan, S. Yu, Converged network-cloud service composition with end-to-end performance guarantee, IEEE Transactions on Cloud Computing 6 (2015) 545-557.
[18] Z. Z. Liu, D. H. Chu, C. Song, X. Xue, B. Y. Lu, Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition, Information Sciences 326 (2016) 315-333.
[19] J. Qi, B. Xu, Y. Xue, K. Wang, Y. Sun, Knowledge based differential evolution for cloud computing service composition, Journal of Ambient Intelligence and Humanized Computing 9 (2018) 565-574.
[20] C. Jatoth, G. Gangadharan, U. Fiore, Optimal fitness aware cloud service composition using modified invasive weed optimization, Swarm and evolutionary computation 44 (2019) 1073-1091.
[21] C. Jatoth, G. Gangadharan, R. Buyya, Optimal fitness aware cloud service composition using an adaptive genotypes evolution based genetic algorithm, Future Generation Computer Systems 94 (2019) 185-198.
[22] S. K. Gavvala, C. Jatoth, G. Gangadharan, R. Buyya, QoS-aware cloud service composition using eagle strategy, Future Generation Computer Systems 90 (2019) 273-290.
[23] F. Dahan, An effective multi-agent ant colony optimization algorithm for QoSaware cloud service composition, IEEE Access 9 (2021) 17196-17207.
[24] H. Tarawneh, I. Alhadid, S. Khwaldeh, S. Afaneh, An Intelligent Cloud Service Composition Optimization Using Spider Monkey and Multistage Forward Search Algorithms, Symmetry 14 (2022) 82-98.
[25] F. Tao, Y. LaiLi, L. Xu, L. Zhang, FCPACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system, IEEE Transactions on Industrial Informatics 9 (2012) 2023-2033.
[26] D. Wang, Y. Yang, Z. Mi, A genetic-based approach to web service composition in geodistributed cloud environment, Computers & Electrical Engineering 43 (2015) 129-141.
[27] H. Kurdi, A. Al-Anazi, C. Campbell, A. Al Faries, A combinatorial optimization algorithm for multiple cloud service composition, Computers & Electrical Engineering 42 (2015) 107-113.
[28] A. Jula, Z. Othman, E. Sundararajan, Imperialist competitive algorithm with PROCLUS classifier for service time optimization in cloud computing service composition, Expert Systems with applications 42 (2015) 135-145.
[29] Q. Yu, L. Chen, B. Li, Ant colony optimization applied to web service compositions in cloud computing, Computers & Electrical Engineering 41 (2015) 18-27.
[30] F. Chen, R. Dou, M. Li, H. Wu, A flexible QoS-aware Web service composition method by multi-objective optimization in cloud manufacturing, Computers & Industrial Engineering 99 (2016) 423-431.
[31] F. Seghir, A. Khababa, A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition, Journal of Intelligent Manufacturing 29 (2018) 1773-1792.
[32] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, S. E. Dashti, CSA-WSC: cuckoo search algorithm for web service composition in cloud environments, Soft Computing 22 (2018) 8353-8378.
[33] L. Liu, S. Gu, D. Fu, M. Zhang, R. Buyya, A new multi-objective evolutionary algorithm for inter-cloud service composition, KSII Transactions on Internet and Information Systems (TIIS) 12 (2018) 1-20.
[34] J. Zhou, X. Yao, Y. Lin, F. T. Chan, Y. Li, An adaptive multi-population differential artificial bee colony algorithm for manyobjective service composition in cloud manufacturing, Information Sciences 456 (2018) 50-82.
[35] G. J. Ibrahim, T. A. Rashid, M. O. Akinsolu, An energy efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment, Journal of parallel and distributed computing 143 (2020) 77-87.
[36] E. Al-Masri, Q. H. Mahmoud, Investigating web services on the world wide web, Proceedings of the 17th international conference on World Wide Web 20 (2008) 795-804.
[37] OWLS-Xplan Service Composition Planner.
[38] A. G. M Klusch, OWLS-Xplan Service Composition Planner, (2006).
[39] Z. Zheng, Y. Zhang, M. R. Lyu, Distributed qos evaluation for real-world web services, 2010 IEEE International Conference on Web Services 21 (2010) 83-90.