[1] S. Hatamzadeh-Varmazyar, M. NaserMoghadasi, Z. Masouri, A moment method simulation of electromagnetic scattering from coducting bodis, Progress in Electromagnetics Research 81 (2008) 99-119.
[2] S. Hatamzadeh-Varmazyar, M. NaserMoghadasi, E. Babolian, Z. Masouri, Numerical approach to survery the problem of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions, Progress in Electromagnetics Research 81 (2008) 393-412.
[3] S. Aggarwal, R. Chauhan, N. Sharma, Application of elzaki transform for solving linear Volterra integral equation first kind, International Journul of Research in Advent Technology 6 (2018) 3687-3692.
[4] A. R. Vahidi, T. Damercheli, A modified ADM for solving systems of linear Fredholm integral equations of the second kind, Applied Mathematical Sciences 6 (2012) 1267-1273.
[5] A. Shoja, A. R. Vahidi, E. Babolian, A spectral iterative method for solving nonlinear singular Volterra integral equations of Abel type, Applied Mathematical Sciences 112 (2017) 79-90.
[6] M. A. Alzhrani, H. O. Bakodah, M. Al-mazmumy, A 3/8 Simpson’s numerical scheme for the classes of Volterra integral equations of first kind, Nonlinear Analysis and Differential Equations 7 (2019) 99-113. http://dx.doi.org/10.12988/nade.2019.9812/
[7] K. Maleknejad, R. Mollapourasl, M. Alizadeh, Numerical solution of Volterra type integral equation of the first kind with wavelet basis,Appl. Math. Comput. 194 (2007) 400-405.
[8] K. Maleknejad, E. Hashemizadeh, R. Ezzati, A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation, Commun. Nonlin. Sci. Numer. Silmulat. 16 (2011) 647-655.
[9] M. Bahmanpour, M. A. Fariborzi Araghi, Numerical solution of Fredholm and Volterra integral equations of the first kind using wavelets bases, The Journul of Mathematics and Computer Science 5 (2012) 337-345.
[10] I. O. Isaac, A. O. Unanam, Quadrature method for one-dimensional Volterra integral equations of the first kind, Journul of Modern Mathematics and Statistics 4 (2010) 109-114.
[11] N. Khan, M. S. Hashmi, S. Iqbal, T. Mahmood, Optimal homotopy asympotic method for solving Volterra integral equations of first kind, Alexandria Engineering Journal 5 (2014) 751-755.
[12] E. Babolian, Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with BlockPulse functions, Journal of Computational and Applied Mathematics 220 (2008) 51-57.
[13] K. Maleknejad, B. Rahimi, Modification of block{pulse functions and their application to solve numbering Volterra integral equation of the first kind, Commuh. Nonlin. SCi. Numer. Simulat. 16 (2011) 2469-2477.
[14] Z. Masouri, E. Babolian, S. H. Varmazyar, An expansion-iterative method for numeically solving Volterra integral equation of the first kind, Comput. Math. APPl. 59 (2010) 1491-149.
[15] ZH. Jiang, W. Schaufelberger, Block-pulse functions and their applications in control systems, Springer-Verlag, Berlin, (1992).
[16] A. M. Wazwaz, Linear and Nonlinear Integral Equations, Methods and Applications, Springer Heidelberg Dordrecht London NewYork, ISBN 978-3-642-21448-6.
[17] F. Mirzaee, E. Haddadiyan, Approximate solutions for mixed nonlinear VolterraFredholm type integral equations via modified block-pulse functions, Journul of the Association of Arab Universities for Basic and Applied Sciences 12 (2012) 65-73.
[18] S. Aggarwal, N. Sharma, Laplace transform for the solution of first kind linear Volterra integral equation, Journul of Advanced Researchin Applied Mathematics and Statistics 4 (2019) 16-23.