[1] M. Allahyar, M. Rostamy-Malkhalifeh, An Improved Approach for Estimating Returns to Scale in DEA,Bulltain of Malaysian Mathematical Science Society 37 (2014) 1185-1194.
[2] M. Allahyar, M. Rostamy-Malkhalifeh, Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale, Computers and Industrial Engineering 82 (2015) 78-81.
[3] K. B. Atici, V. V. Podinovski, Mixed partial elasticities in constant returns-to-scale production technologies, European Journal of Operations Research 220 (2012) 262-269.
[4] R. D. Banker, I. Bardhan, W. W. Cooper, A note on returns to scale in DEA, European Journal of Operations Research 88 (1996) 583-585.
[5] R. D. Banker, A. Charnes, W. W. Cooper, A. P. Schinnar, Bi-External principle for frontier estimation and efficiency evaluations, Management Sciince 27 (1981) 1370-1382.
[6] R. D. Banker, A. Charnes, W. W. Cooper, Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, Management Science 30 (1984) 1078-1092.
[7] R. D. Banker, W. W. Cooper, L. M. Seiford, RM. Thrall, J. Zhu, Returns to scale in different DEA models, European Journal of Operational Research 154 (2004) 345-362.
[8] R. D. Banker, A. Maindiratta, Piecewise loglinear estimation of efficient production sur AR. faces, Management Sciences 32 (1986) 126-135.
[9] M. S. Bazaraa, J. J. Jarvis, H. D. Sherali, Linear Programming and Network Flows, Wiley, (2009).
[10] J. P. Boussemart, W. Briec, N. Peypoch, C. Tavra, α-Returns to scale and multi-output production technologies, European Journal of Operational Research 197 (2009) 332-339.
[11] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research 2 (1978) 429-444.
[12] A. Charnes, W. W. Cooper, L, Seiford, J. Stutz, Invariant multiplicative efficiency and piecewise cobb-douglas envelopments, Operations Research Letters 2 (1983) 101-103.
[13] A. Charnes, W. W. Cooper, L, Seiford, J. Stutz, A multiplicative model for efficiency analysis, Socioecon Planning Science 16 (1982) 223-224.
[14] W. W. Cooper, L. Seiford, J. Zhu, Data envelopment analysis: History, models, and interpretations, International Series in Operations Research and Management Science 164 (2011) 1-39.
[15] J. Ding, C. Feng, H. Wu, A radial framework for estimating the efficiency and returns to scale of a multi-component production system in DEA, International Series in Operations Research and Management Science 239 (2016) 351-384.
[16] R. Eslami, M. Khoveyni, Right and left returns to scales in data envelopment analysis: Determining type and measuring value, Computers and Industrial Engineering 65 (2013) 500-508.
[17] P. Hadjicostas, A. C. Soteriou, One-sided elasticities and technical efficiency in multioutput production: A theoretical framework, European Journal of Operational Research 168 (2006) 425-449.
[18] M. Mirbolouki, M. Allahyar, A parameterfree approach for estimating the quality and quantity of the right and left returns to scale in Data Envelopment Analysis, Expert Systems with Applications 125 (2019) 170-180.
[19] M. Mu, J. Paradi, J. Ruggiero, Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Computers and Operations Research 33 (2006) 1173-1183.
[20] M. Omidi, M. Rostamy-Malkhalifeh, A. Payan, F. Hosseinzadeh Lotfi, Estimation of Overall Returns to Scale (RTS) of a Frontier Unit Using the Left and Right RTS, Computational Economist 53 (2019) 633-655.
[21] V. V. Podinovski, F. R. Frsund, V. E. Krivonozhko, A simple derivation of scale elasticity in data envelopment analysis, European Journal of Operational Research 197 (2009) 149-153.
[22] V. V. Podinovski, F. R. Frsund, Differential characteristics of efficient frontiers in data envelopment analysis, Operations Research 58 (2010) 1743-1754.
[23] V. V. Podinovski, R. G. Chambers, K. B. Atici, I. D. Deineko, Marginal values and returns to scale for nonparametric production frontiers, Operations Research 64 (2016) 236-250.
[24] V. V. Podinovski, Returns to scale in convex production technologies, European Journal of Operational Research 258 (2017) 970-982.
[25] J. Ruggiero, Non-discretionary inputs in data envelopment analysis, European Journal of Operational Research 111 (1998) 461-469.
[26] B. K. Sahoo, M. Khoveyni, R. Eslami, P. Chaudhury, Returns to scale and most productive scale size in DEA with negative data, European Journal of Operational Research 255 (2016) 545-558.
[27] M. J. Syrjnen, Non-discretionary and discretionary factors and scale in data envelopment analysis, European Journal of Operational Research 158 (2004) 20-33.
[28] M. Taleb, R. Khalid, R. Ramli, Estimating the return to scale of an integer-valued data envelopment analysis model: efficiency assessment of a higher education institution, Arabian Journal of Basic Application Science 26 (2019) 144-152.
[29] G. L. Yang, W. Liu, Estimating directional returns to scale in DEA, Information science 55 (2017) 243-273.
[30] G. L. Yang, R. Rousseau, L. Yang, W. Liu, A study on directional returns to scale, Journal of Informetr 8 (2014) 628-641.
[31] M. Zarepisheh, M. Soleimani-damaneh, L. Pourkarimi, Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions, Applied Mathematical Letters 19 (2006) 964-967.
[32] M. Zarepisheh, M. Soleimani-damaneh, Global variation of outputs with respect to the variation of inputs in performance analysis; generalized RTS, European Journal of Operational Research 186 (2008) 786-800.
[33] M. Zarepisheh, E. Khorram, G. R. Jahanshahloo, Returns to scale in multiplicative models in data envelopment analysis, Annals of Operational Research 173 (2010) 195-206.
[34] V. Zelenyuk, A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation, European Journal of Operational Research 228 (2013) 592-60