[1] Z. A. A. Al-Zhour, New techniques for solving some matrix and matrix differential equations,Ain Shams Eng. J. 6 (2015) 347-354.
[2] S. U. Altinbasak, M. Demiralp, Solutions to linear matrix ordinary differential equations via minimal, regular, and excessive space extension based universalization, J. Math. Chem. 48 (2010) 2266-86.
[3] F. P. A. Beik, D. K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equation, Comput. Math. Appl. 62 (2011) 4605-4613.
[4] F. P. A. Beik, D. K. Salkuyeh, The coupled Sylvester-transpose matrix equations over
generalized centrosymmetric matrices,Int. J. Comput. Math. 90 (2013) 1546-1566.
[5] F. P. A. Beik, D. K. Salkuyeh, M. M. Moghadam, Gradient-based iterative algorithm for solving the generalized coupled Sylvester-transpose and conjugate matrix equations over reflexive (anti-reflexive) matrices,Trans. Inst. Measurement. Control. 36 (2014) 99-110.
[6] D. S. Bernstein, Matrix Mathematics theory, facts, and formulas, Second edition, Princeton University Press, New Jersey, (2009).
[7] M. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein Polynomial basis, Journal of Computational and Applied Mathematics 205 (2007) 272-280.
[8] J. P. Boyd, Chebyshev and Fourier spectral methods, Second edition, Dover, New York, (2000).
[9] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in single domisns, Springer-Verlag, (2006).
[10] J. P. Chehab, Matrix differential equations and inverse preconditioners, Comp. Appl. Math. 26 (2007) 95-128.
[11] E. Defez, A. Hervs, J. Ibez, M. M. Tung, Numerical solutions of matrix differential models using higher-order matrix splines,Mediterr J. Math. 9 (2012) 865-882.
[12] E. Defez, L. Solera, A. Hervs, C. Santamaria, Numerical solution of matrix differential models using cubic matrix splines, Computers and Mathematics with Applications 50 (2005) 693-699.
[13] F. Ding, T. Chen, Iterative least-squares solutions of coupled Sylvester matrix equations,Systems Control Lett. 54 (2005) 95-107.
[14] F. Ding, T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim. 44 (2006) 2269-2284.
[15] T. M. Flett, Differential Analysis, Cambridge University Press, (1980).
[16] A. Golbabai, S. Panjeh Ali Beik, An efficient method based on operational matrices of Bernoulli polynomials for solving matrix differential equations, Comp. Appl. Math. 34 (2015) 159-175.
[17] G. H. Golub, C. F. V. Loan, Matrix computations, 2nd edn. The Johns Hopkins University Press, Baltimore, (1989).
[18] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, Inc., (1978).
[19] S. Mashayekhi, Y. Ordokhani, M. Razzaghi, Hybrid functions approach for optimal control of systems described by integrodifferential equations, Appl. Math. Model. 37 (2013) 3355-3368.
[20] K. Nouri, S. Panjeh Ali Beik, L. Torkzadeh, Operational Matrix Approach for SecondOrder Matrix Differential Models, Iranian Journal of Science and Technology Transactions A: Science (2019).
[21] M. Paripour, M. Kamyar, Numerical solution of nonlinear Volterra-Fredholm integral equations by using new basis functions, Communications in Numerical Analysis 17 (2013) 1-12.
[22] Y. Saad, Iterative Methods for Sparse linear Systems, PWS press, New York, (1995).
[23] D. K. Salkuyeh, F. P. A. Beik, On the gradient based algorithm for solving the general coupled matrix equations, Trans. Inst. Measurement. Control. 36 (2014) 375-381.
[24] E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model. 37 (2013) 4283-4294.
[25] S. Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, Int. J. Syst. Sci. 41 (2010) 709-716.
[26] H. Zheng, W. Han, On some discretization methods for solving a linear matrix ordinary differential equation, J. Math. Chem. 49 (2011) 1026-1041.
[27] S. Abbasbandy, T. Allahviranloo, Numerical solutions of fuzzy differential equations by taylor method, Computational Methods in Applied Mathematics 2 (2002) 113-124.
[28] D. Dubois, H. Prade, Towards fuzzy differential calculus, Fuzzy Sets and Systems 8 (1982) 1-7.
[29] Y. Lai, C. L. Hwang, Fuzzy Mathematical programming theory and applications, Springer, Belin, (1992).