[1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
[2] S. M. Bednov, A new method of solving the integral equations of radiation heat transfer, Journal of engineering physics and thermophysics 51 (1986) 1485-1492.
[3] L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
[4] Andrey E. Kovtanyuk, Alexander Yu. Chebotarev, Nikolai D. Botkin, KarlHeinzHomann, The unique solvability of a complex 3D heat transfer problem, Journal of Mathematical Analysis and Applications 409 (2014) 808-815.
[5] F. A. Hendi, A. M. Albugami, Numerical solution for Fredholm-Volterra integral equation of the second kind by using collocation and Galerkin methods, Journal of King Saud University (Science) 22 (2010) 37-40.
[6] X. F. Li, Approximate solution of linear ordinary dierential equations with variable coecients, Math. Comput. Simulat. 75 (2007) 113-125.
[7] K. Maleknejad, N. Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. 161 (2005) 915-922.
[8] K. Maleknejad, T. Damercheli, Improving the accuracy of solutions of the linear second kind volterra integral equations system by using the Taylor expansion method, Indian J. Pure Appl. Math. 45 (2014) 363-376.
[9] K. Maleknejad, F. Mirzaee, The preconditioned conjugate gradient method for solving convolution-type integral equations, Int. J. Eng. Sci. 14 (2003) 1-11.
[10] K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37 (1999) 1-8.
[11] K. Maleknejad, D. Rostami, Preconditioners for solving stochastic boundary integral equations with weakly singular kernels, Computing 63 (1999) 47-67.
[12] O. D. Kellog, Foundation of Potential Theory, Frederick Unger: New York, 1953.
[13] M. Rahman, Integral Equations and their Applications, WIT Press, 2007.
[14] Adson M. Rocha, Juarez S. Azevedo, Saulo P. Oliveira, Maicon R. Correa, Numerical analysis of a collocation method for functional integral equations, Applied Numerical Mathematics 134 (2018) 31-45.
[15] Y. Ren, B. Zhang, H. Qiao, A simple Taylorseries expansion method for a class of second kind integral equations, J. Comput. Appl. Math. 110 (1999) 15-24.
[16] I. N. Sneddon, Mixed boundary value problems in potential theory, Wiley, New York, 1966.
[17] B. Q. Tang, X. F. Li, A new method for determining the solution of Riccati dierential equations, Appl. Math. Comput. 194 (2007) 431-440.
[18] A. R. Vahidi, T. Damercheli, A Modied ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind, Applied Mathematical Sciences 6 (2012) 1267-1273.
[19] A. M.Wazwaz, Linear and nonlinear integral equations: methods and applications, Higher education, Springer, 2011.
[20] A. M. Wazwaz, A First Course in Integral Equations, World Scientic, Singapore, 1997.