[1] E. Babolian, S. Gholami, M. Javidi, A Numerical Solution for One-dimensional Parabolic Equation Based On PseudoSpectral Integration Matrix, Applied and Computational Mathematics 13 (2014) 306-315.
[2] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Physical Review E 61 (2000) 132-138.
[3] A. Chechkin, V. Gonchar, M. Szyd lowsky, Fractional kinetics for relaxation and superdiffusion in magnetic field, Physics of Plasmas 9 (2002) 78-88.
[4] S. Chen, F. Liu, P. Zhuang, V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling 33 (2009) 256-273.
[5] C. W. Clenshaw, The numerical solution of linear differential equations in Chebushev series, Proceedings of the Cambridge Philosophical Society 53 (1957) 134-149.
[6] S. Das, K. Vishal, P. K. Gupta, A. Yildirim, An approximate analytical solution of timefractional telegraph equation, Applied Mathematics and Computation 217 (2011) 7405-7411.
[7] W. H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics 227 (2007) 1510-1522.
[8] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM Journal on Numerical Analysis 47 (2008) 204-226.
[9] Elsayed, M. E. Elbarbary, Pseudo-spectral integration matrix and boundary value problems, International Journal of Computer Mathematics 84 (2007) 1851-1861.
[10] S. E. El-Gendi, Chebyshev solution of differential, integral, and integro-differential equations, Computer Journal 12 (1969) 282-287.
[11] S. E. El-Gendi, H. Nasr,H. M. El-Hawary, Numerical solution of Poisson’s equation by expansion in Chebyshev polynomials, Bulletin of the Calcutta Mathematics Society 84 (1992) 443-449.
[12] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations 22 (2005) 558-576.
[13] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in rd, Numerical Methods for Partial Differential Equations 23 (2006) 256-281.
[14] R. Friedrich, Statistics of Lagrangian velocities in turbulent flows, Physical Review Letters 90 (2003) Article 084501.
[15] S. Gholami, A Numerical Solution for One-dimensional Parabolic Equation Using Pseudo-spectral Integration Matrix and FDM, Research Journal of Applied Sciences, Engineering and Technology 7 (2014) 801-806.
[16] S. Gholami, E. Babolian, M. Javidi, PseudoSpectral operational matrix for numerical solution of single and multi-term time fractional diffusion equation, Turkish Journal of Mathematics 40 (2016) 1118-1133.
[17] P. K. Gupta, Approximate analytical solutions of fractional Benny-Lin equation by reduced differential transform method and the homotopy perturbation method, Computers and Mathematics with Applications 61 (2011) 2829-2842.
[18] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hanggi, Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving, Physical Review Letters 99 (2007) 1-4.
[19] A. K. Khalifa, E. M. E. Elbarbary, M. A. Abd-Elrazek, Chebyshev expansion method for solving second and fourth order elliptic equations, Applied Mathematics and Computation 135 (2003) 307-318.
[20] Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Applied Mathematical Modelling 39 (2015) 1163-1171.
[21] Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, Journal of Computational and Applied Mathematics 235 (2011) 3285-3290.
[22] J. Liang, Y. Q. Chen, Hybrid symbolic and numerical simulation studies of timefractional order wave-diffusion systems, International Journal of Control 79 (2006) 1462-1470.
[23] C. P. Li, F. H. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcation Chaos 22 (2012) (28 pages) 1230014.
[24] Y. Lin, C. Xu, Finite difference/spectral approximations for the time fractional diffusion equation, Journal of Computational Physics 225 (2007) 1533-1552.
[25] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation, Journal of Computational and Applied Mathematics 166 (2004) 209-219.
[26] C. F. Lorenzo, T. T. Hartley, Initialization, Conceptualization, and Application in the Generalized Fractional Calculus, NASA/TP, Lewis Research Center, OH, 1998.
[27] V. E. Lynch, B. A. Carreras, D. del Castillo-Negrete, K. Ferreira-Mejias, Numerical methods for the solution of partial differential equations of fractional order, Journal of Computational Physics 92 (2003) 406-421.
[28] W. McLean, K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer Algor 52 (2009) 69-88.
[29] M. M. Meerschaert, D. Benson, B. Baumer, Multidimensional advection and fractional dispersion, Physical Review E 59 (1999) 5026-5028.
[30] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion equations, Journal of Computational and Applied Mathematics 172 (2004) 65-77.
[31] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two sided spacefractional partial differential equations, Applied Numerical Mathematics 56 (2006) 80-90.
[32] R. Metzler, E. Barkai, J. Klafter, Anomalous diffusion and relxation close to thermal equilibrium: a fractional Fokker-Planck equation, Physical Review Letters 82 (1999) 3563-3567.
[33] R. Metzler, E. Barkai, J. Klafter, Spaceand time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and Physical motivation , Chemical Physics 284 (2002) 67-90.
[34] R. Metzler, E. Barkai, J. Klafter, Deriving fractional Fokker-Planck equations from a generalized master equation, Euro physics Letters 46 (1999) 431-436.
[35] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Reports. 339 (2000) 1-77.
[36] R. Metzler, J. Klafter, The fractional Fokker-Planck equation: dispersive transport in an external force field, Journal of Molecular Liquids 86 (2000) 219-228.
[37] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, (1974).
[38] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
[39] I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (2000) 359-386.
[40] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, V. B. Jara, Matrix approach to discrete fractional calculus II: partial fractional differential equations, Journal of Computational Physics 228 (2009) 3137-3153.
[41] R. Scherer, S. L. Kalla, L. Boyadjiev, B. Al-Saqabi, Numerical treatment of fractional heat equations, Applied Numerical Mathematics 58 (2008) 1212-1223.
[42] P. P. Valko, J. Abate, Numerical inversion of 2-d Laplace transforms applied to fractional diffusion equation, Applied Numerical Mathematics 53 (2005) 73-88.
[43] A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional FokkerPlanck equation, Physical Review E 77 (2008) 1-6.
[44] C. Wu, L. Lu, Implicit numerical approximation scheme for the fractional Fokker-Planck equation, Applied Mathematics and Computations 216 (2010) 1945-1955.
[45] S. Yuste, Weighted average finite difference methods for fractional diffusion equations, Journal of Computational Physics 216 (2006) 264-274.
[46] G. Zaslavsky, Chaos, fractional kinetics and anomalous transport, Phys. Rep. 371 (2002) 461-580.
[47] F. H. Zeng, C. P. Li, F. W. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013) 2976-3000.
[48] P. Zhang, F. Liu, V. Anh, Numerical approximation of Levy-Feller diffusion equation and its probability interpretation, Journal of Computational and Applied Mathematics 206 (2007) 1098-1115.
[49] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. NUMER.