New Results on Ideals in MV-algebras

S. Saidi Goraghani *,†, R. A. Borzooei ‡

Received Date: 2017-01-12 Revised Date: 2018-05-06 Accepted Date: 2018-08-27

Abstract

In the present paper, by considering the notion of ideals in MV-algebras, we study some kinds of ideals in MV-algebras and obtain some results on them. For example, we present definition of ultra ideal in MV-algebras, and we get some results on it. In fact, by definition of ultra ideals, we present new conditions to have prime ideals, positive implicative ideals and maximal ideals in MV-algebras. Also, we state some properties on contracted or extended ideals as useful examples of ideals in MV-algebras. Finally, we try to prove the Chinese reminder theorem in MV-algebras.

Keywords: MV-algebra; Ideal; Ultra ideal; Chinese reminder theorem; Pseudo-hoops.

1 Introduction

MV-algebras were defined by C. C. Chang [3, 4] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: CN-algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It is discovered that MV-algebras are naturally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finite-dimensional C*-algebras. They are also naturally related to Ulam’s searching games with lies. MV-algebras admit a natural lattice reduct and hence a natural order structure. In particular, emphasis has been put the ideal theory of MV-algebras [8, 11]. Hoo, Iseki and Tanaka introduced the notions of implicative and quasi-implicative ideals of MV-algebras [12, 13]. Many important properties can be derived from the fact, established by Chang that nontrivial MV-algebras are subdirect products of MV-chains, that is, totally ordered MV-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an MV-algebra. Recently, some researchers worked on MV-algebras and ideals in them (see [2, 10, 17, 18, 19]). For continuing of study of ideals in MV-algebras, we present definition of ultra ideal in MV-algebras and verify the relationship between it and some other ideals. Also, we introduce contraction and extension of an ideal in MV-algebras and we get related results.

*Corresponding author. SiminSaidi@yahoo.com, Tel:+98(912)4903982.
†Department of Mathematics, Farhangian University, Tehran, Iran.
‡Department of Mathematics, Shahid Beheshti University, Tehran, Iran.
2 Preliminaries

In this section, we review some definitions and related lemmas and theorems in MV-algebras that we use in the next sections.

Definition 2.1 [5] An MV-algebra is a structure $M = (M, \oplus, 0)$ of type $(2, 1, 0)$ such that:

(MV1) $(M, \oplus, 0)$ is an Abelian monoid,
(MV2) $(a')' = a,$
(MV3) $0' \oplus a = 0'$,
(MV4) $(a' \oplus b)' \oplus (b' \oplus a)' \oplus a,$
(MV5) $a \oplus b = (a' \oplus b')'$,
(MV6) $a \oplus 1 = 1,$
(MV7) $(a \oplus b) \oplus (b \oplus a) = a \oplus b,$
(MV8) $a \oplus a' = 1,$
for every $a, b \in M$.

It is clear that $(M, \oplus, 1)$ is an Abelian monoid. Now, if we define auxiliary operations \vee and \wedge on M by $a \vee b = (a' \oplus b')'$ and $a \wedge b = a \ominus (a' \oplus b)$, for every $a, b \in M$, then $(M, \vee, \wedge, 0)$ is a bounded distributive lattice. An MV-algebra M is a Boolean algebra if and only if the operation “\ominus” is idempotent, i.e., $x \ominus x = x$, for every $x \in M$. In MV-algebra M, the following conditions are equivalent: (i) $a' \oplus b = 1$, (ii) $a \ominus b' = 0$, (iii) $b = a \ominus (b \ominus a)$, (iv) there exists $c \in M$ such that $a \ominus c = b$, for every $a, b, c \in M$. For any two elements a, b of M, $a \leq b$ if and only if a, b satisfy the above equivalent conditions (i)–(iv). An ideal of MV-algebra M is a subset I of M, satisfying the following condition: (I1) $0 \in I$, (I2) $x \leq y$ and $y \in I$ imply that $x \in I$, (I3) $x \ominus y \in I$, for every $x, y \in I$. Let I be an ideal of M and $I \neq M$ (we say I is a proper ideal of M). Then (i) I is a prime ideal if and only if $x \ominus y \in I$ or $y \ominus x \in I$, for every $x, y \in M$. A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M strictly contains I. In MV-algebra M, the distance function $d : M \times M \to M$ is defined by $d(x, y) = (x \ominus y) \oplus (y \ominus x)$ which satisfies (i) $d(x, y) = 0$ if and only if $x = y$, (ii) $d(x, y) = d(y, x)$, (iii) $d(x, z) \leq d(x, y) \oplus d(y, z)$, (iv) $d(x, y) = d(x', y')$, (v) $d(x \ominus z, y \oplus t) \leq d(x, y) \oplus d(z, t)$, for every $x, y, z, t \in M$. Let I be an ideal of MV-algebra M. Then we denote $x \sim y$ ($x \equiv_I y$) if and only if $d(x, y) \in I$, for every $x, y \in M$. So \sim is a congruence relation on M. Denote the equivalence class containing x by \bar{x} and $\frac{d}{dM} = \{\bar{x} : x \in M\}$. Then $(\frac{M}{M}, \oplus, 0)$ is an MV-algebra, where $\frac{a}{M} = x$ and $\frac{d}{M} = \frac{x \oplus y}{M}$, for all $x, y \in M$. Let M and K be two MV-algebras. A mapping $f : M \to K$ is called an MV-homomorphism if (H1) $f(0) = 0$, (H2) $f(x \oplus y) = f(x) \oplus f(y)$ and (H3) $f(x') = (f(x))'$, for every $x, y \in M$. If f is one to one (onto), then f is called an MV-monomorphism (epimorphism). If f is onto and one to one, then f is called an MV-isomorphism.(see [5])

Definition 2.2 [6, 9] (i) An l-group is an algebra $(G, +, -0, \vee, \wedge)$, where the following properties hold:

(a) $(G, +, -0)$ is a group,
(b) (G, \vee, \wedge) is a lattice,
(c) $x \leq y$ implies that $x + a \leq y + a$, for any $x, y, a, b \in G$.

A strong unit $u > 0$ is a positive element with property that for any $g \in G$ there exits $n \in \omega$ such that $g \leq nu$. The Abelian l-groups with strong unit will be simply called lu-groups.

The category whose objects are MV-algebras and whose homomorphisms are MV-homomorphisms is denoted by MV. The category whose objects are pairs (G, u), where G is an Abelian l-group and u is a strong unit of G and whose homomorphisms are l-group homomorphisms is denoted by UG. The functor that establishes the categorial equivalence between MV and UG is $\Gamma : \text{UG} \to \text{MV}$, where $\Gamma(G, u) = [0, u]_G$, for every lu-group (G, u) and $\Gamma(h) = h|_{[0, u]}$, for every lu-group homomorphism h.

Lemma 2.1 [5] Let M be an MV-algebra. Then $x \leq y$ implies that $x \ominus z \leq y \ominus z$ and $x + z \leq y + z$, for every $x, y, z \in M$.

Definition 2.3 [15] A BCK-algebra is a structure $X = (X, *, 0)$ of type $(2, 0)$ such that:

(BCK1) $(x * y) * (x * z) * (z * y) = 0$,
(BCK2) $(x * (x * y)) * y = 0$,
(BCK3) $x * x = 0$,
(BCK4) $0 * x = x$,
(BCK5) if $x * y = y * x = 0$, then $x = y$, for all
x, y, z ∈ X.

The relation x ≤ y which is defined by x * y = 0 is a partial order on X with 0 as least element.

In BCK-algebra X, for any x, y, z ∈ X, we have (BCK6) (x * y) * z = (x * z) * y.

Let (X, +, 0) be a BCK-algebra. Subset ∅ ≠ I ⊆ X is called an ideal of X, if 0 ∈ I and for any x, y ∈ X, x + y ∈ I and y ∈ I, imply that x ∈ I. A nonempty subset I of X is said to be a positive implicative ideal if 0 ∈ I and (x * y) * z ∈ I, y * z ∈ I imply that x * z ∈ I, for any x, y, z ∈ X. Furthermore, any positive implicative ideal must be an ideal. See [15]

Theorem 2.1 [5] If (M, ⊕', 0, 1) is an MV-algebra, then (M, ⊕, 0) is a BCK-algebra.

Corollary 2.1 [5] (i) Every prime ideal I of an MV-algebra M is contained in a unique maximal ideal of M.

(ii) Every proper ideal of an MV-algebra M is an intersection of prime ideals of M.

Lemma 2.2 [5] Let M be an MV-algebra and ∅ ≠ W ⊆ M. If the generated ideal by W is denoted by < W >, then < W > := {x ∈ M : x ≤ w₁ + · · · + wₙ, for some w₁, · · · , wₙ ∈ W}.

Proposition 2.1 [5] Let M, N be MV-algebras and J be a maximal ideal of N. Then for any homomorphism h : M → N, the inverse image h⁻¹(J) is a maximal ideal of M.

Lemma 2.3 [5] Let M, N be two MV-algebras and f : M → N be an MV-homomorphism. Then the following properties hold:

(i) Ker(f) is an ideal of M,

(ii) if f is an MV-epimorphism, then M/ Ker(f) ∼= N,

(iii) f(x) ≤ f(y) iff x ⊗ y ∈ Ker(f),

(iv) f is injective iff Ker(f) = {0}.

Definition 2.4 [6] A product MV-algebra (or PMV-algebra, for short) is a structure A = (A, ⊕, ·', 0), where (A, ⊕, ·', 0) is an MV-algebra and ·' is a binary associative operation on A such that the following property is satisfied: if x + y is defined, then x·z + y·z and x·z + z·y are defined and (x + y)·z = x·z + y·z, z.(x + y) = z·x + z·y, for every x, y, z ∈ A, where ·' is the partial addition on A. A unity for the product is an element e ∈ A such that e·x = x·e = x, for every x ∈ A. If A has a unity for product, then e = 1. A PMV-homomorphism is an MV-homomorphism which also commutes with the product operation.

3 Some results on ideals

In this section, we verify some results on ideals.

Proposition 3.1 Let M be an MV-algebra and I ⊆ M. Then

(i) I is an ideal of M if and only if the following holds:

(i) 0 ∈ I,

(ii) x ⊗ y ∈ I,

(iii) if x ⊗ y, y ∈ I, then x ∈ I, for any x, y ∈ M.

(2) I is an ideal of M if and only if the following holds:

(i) 0 ∈ I,

(ii) x ⊗ y ∈ I,

(iii) if z ⊗ y, y ⊗ x ∈ I, then z ⊗ x ∈ I, for any x, y, z ∈ M.

Proof. (1) (⇒) Let I be an ideal of M. Then (i) and (ii) are clear. Now, let x ⊗ y, y ∈ I. Then by (ii) and (MV7), (y ⊗ x) ⊗ x = (x ⊗ y) ⊗ y ∈ I. Since x ≤ (y ⊗ x) ⊗ x ∈ I, we have x ∈ I.

(⇐) Let (i), (ii) and (iii) be true. If x ≤ y and y ∈ I, then x ⊗ y = x ⊗ y′ = 0 ∈ I and so by (iii), x ∈ I. Hence, I is an ideal of M.

(2) (⇒) Let I be an ideal of M. Then (i) and (ii) are clear. Now, let z ⊗ y, y ⊗ x ∈ I, for any x, y, z ∈ M. Then by Theorem 2.1 and (BCK1), ((z ⊗ x) ⊗ (z ⊗ y)) ⊗ (y ⊗ x) = 0 and so by (1), (z ⊗ x) ∈ I.

(⇐) Let (i), (ii) and (iii) be true. If x ≤ y and y ∈ I, then x ⊗ y = x ⊗ y′ = 0 ∈ I. Since y ⊗ 0 = y ∈ I, by (iii), x = x ⊗ 0 ∈ I. Hence, I is an ideal of M.

Theorem 3.1 Let J be an ideal of MV-algebra M and a ∈ M. Then

< J ∪ {a} > := {x ∈ M : ∃n ∈ N, (x' ⊕ na') ∈ J}.

Moreover, < J ∪ {a} > is the least ideal of M containing J ∪ {a}.

Proof. Let T = {x ∈ M : ∃n ∈ N, (x' ⊕ na') ∈ J}. If x ∈ < J ∪ {a} >, then by Lemma 2.2,
there exist $b_1, \ldots, b_m \in J \cup \{a\}$ such that $x \leq b_1 \oplus b_2 \oplus \cdots \oplus b_m$, and so $x \ominus (b_1 \oplus b_2 \oplus \cdots \oplus b_m) = 0$. It means that $((x \ominus b_1) \ominus (b_2) \ominus \cdots) \ominus b_m = 0 \in J$. We consider two cases. Let $b_i \neq a$, for any $1 \leq i \leq m$. Then by Theorem 2.1 and (BCK6), $((x \ominus a) \ominus b_1) \ominus (b_2) \ominus \cdots) \ominus b_m = 0 \in J$. Since $b_1, \ldots, b_m \in J$, we have $x \ominus a \in J$ and so $x \in T$. If there exists $b_i = a$, for some $1 \leq i \leq m$, then by renumbering, there exist $n, k \in N$ and $n, k < m$ such that $((x' \ominus na) \ominus b_1) \ominus \cdots) \ominus b_k = 0 \in J$. It results that $(x' \ominus na) \in J$ and so $x \in T$. Now, let $x \in T$. Then there exists $n \in N$ such that $(x' \ominus na) \in J$. Let $u = (x' \ominus na) \ominus x \in J \cup \{a\}$. Then there is $u \in J \cup \{a\}$ such that $(x' \ominus na) \ominus u = u \ominus u = 0$. Hence, $x \in J \cup \{a\}$.

Finally, we will show that $J \cup \{a\} >$ is the least ideal of M containing $J \cup \{a\}$. Let C be an ideal of M containing $J \cup \{a\}$. We must show that $J \cup \{a\} > C$. Since $a \in C$, we have $(x' \ominus na) \ominus na \in C$. Now, by (MV4), we have $x \leq (x \ominus na) \ominus x = (x' \ominus na) \ominus na \in C$. It results that $x \in C$. Therefore, $J \cup \{a\} > C$.

Proposition 3.2 Let $a, b \in M$ and J be an ideal of M. Then $J \cup \{a\} > \cap \leq J \cup \{b\} >$.

Proof. Let $x \in J \cup \{a\} > \cap \leq J \cup \{b\} >$. Then by Theorem 3.1, there exist $m, n \in N$ such that $(x' \ominus na) \in J$ and $(x' \ominus mb) \in J$. Let $u = (x' \ominus na) \ominus x \in J \cup \{a\}$. By Theorem 2.1 and (BCK6), we have

$$((x \ominus u) \ominus v) \ominus na = (x \ominus u) \ominus (v \ominus na) = (x \ominus na) \ominus v = (x' \ominus na) \ominus u \ominus v = (u \ominus u) \ominus v = 0.$$

Similarly, we have $((x \ominus u) \ominus v) \ominus mb = (x' \ominus mb) \ominus v = (x \ominus v) \ominus u = 0$. Let $t = (x \ominus u) \ominus v$. We have $a \leq a \oplus b$. Then by Lemma 2.1, $t \ominus (a \oplus b) \leq t \ominus a$ and $(t \ominus (a \oplus b)) \ominus (a \oplus b) \leq (t \ominus a) \ominus (a \oplus b) = (t \ominus (a \oplus b)) \ominus a \leq (t \ominus a) \ominus a$. Hence, $(t \ominus (a \oplus b)) \ominus (a \oplus b) \leq (t \ominus a) \ominus a$. Similarly, it results that $(t' \ominus n(a \oplus b)) \ominus (a \oplus b) \leq (t' \ominus na) \ominus 0$ and so $((x \ominus u) \ominus v) \ominus na \ominus 0 = 0$. It is easy to show that $(x' \ominus na) \ominus u \ominus v = 0$. Since $u, v \in J$,

Notation: In general, the converse of Proposition 3.2, is not true.

Example 3.1 Let $M = \{0, 1, 2, 3\}$ and operation “\ominus” is defined on M as follows:

<table>
<thead>
<tr>
<th>\oplus</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

If $0' = 3$, $1' = 2$, $2' = 1$ and $3' = 0$, then $(M, \ominus, 0, 3)$ is an MV-algebra and $I = \{0, 1\}$ is an ideal of M. It is easy to show that $I \cup \{1, 2\} = I \cup \{\{1, 2, 3\} = \{x : x \in N, (x' + n)^{-}\} = \{0, 1, 2, 3\}, I \cup \{1\} = \{0, 1\}$ and $I \cup \{2\} = \{0, 1, 2, 3\}$. It results that $I \cup \{1, 2\} > 0 < I \cup \{1\} > \cap \leq I \cup \{2\}$.

4 Ultra ideals

In this section, we present definition of ultra ideals in MV-algebras. Then we verify some properties about them, and we obtain the relationship between ultra ideals and some other ideals.

Definition 4.1 Let M be an MV-algebra and I be a non trivial ideal of M. Then I is called an ultra ideal of M if for every $x \in M$, $x \in I$ if and only if $x' \notin I$.

Example 4.1 Let $M = \{0, 1, 2, 3, 4\}$ and the operation “\ominus” on M is defined as follows:

<table>
<thead>
<tr>
<th>\ominus</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

If $0' = 4$, $1' = 4$, $2' = 3$, $3' = 2$ and $4' = 0$, then $(M, \ominus, 0, 4)$ is an MV-algebra and $I = \{0, 1, 2\}$, $J = \{0, 1, 3\}$ and $K = \{0, 1\}$ are ideals of M. It is easy to show that I, J are ultra ideals of M. Since $2' = 3 \notin K$ and $2 \notin K$, K is not an ultra ideal of M.
Theorem 4.1 Let I be an ultra ideal of MV-algebra M, J be a proper ideal of M and $I \subseteq J$. Then J is an ultra ideal of M, too.

Proof. Let $x \in J$. If $x' \in J$, then by (I_3), $1 = x \oplus x' \in J$, which is a contradiction. Now, let $x' \notin J$. If $x \notin J$ and so $x' \in J \subseteq J$, which is a contradiction.

By Theorem 2.1, in MV-algebra $(M, \mathbb{v}, 0, 1)$, if I is an ideal of BCK-algebra $(M, \mathbb{v}, 0)$ and it satisfies in (I_3), then I is an ideal of MV-algebra $(M, \mathbb{v}, 0, 1)$, too. Hence, in this case, definition of positive implicative ideals in BCK-algebras can be translated to MV-algebras. Then we can present the definition of positive implicative ideals in MV-algebras as follows:

Let M be an MV-algebra and $0 \neq I \subseteq M$. Then I is called a positive implicative ideal of M if the following hold: (i) $0 \in I$, (ii) $x \oplus y \in I$, (iii) if $(x \oplus y) \ominus z \in I$ and $y \ominus z \in I$, then $x \ominus z \in I$, for any $x, y, z \in M$. Also, in this field, all of proved theorems of ideals in BCK-algebras are true in MV-algebras.

Example 4.2 (i) Let $M = \{0, 1, 2\}$ and operation \oplus be defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

If $0' = 2$, $1' = 1$ and $2' = 0$, then $(M, \mathbb{v}, 0, 2)$ is an MV-algebra. It is easy to show that $I = \{0, 1\}$ is a positive implicative ideal of M.

(ii) In Example 4.1, K is a positive implicative ideal of M.

(iii) Let $M_2(\mathbb{R})$ be the ring of square matrices of order 2 with real elements and let 0 be the matrix with all elements 0. It is easy to see that $M_2(\mathbb{R})$ is an l-group. If $v = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$, then $(M_2(\mathbb{R}), v)$ is an l-group and so $M = \Gamma(M_2(\mathbb{R}), v)$ is an MV-algebra. It is easy to see that $I(M) = \{\{0\}, M\}$, where $I(M)$ is the set of ideals of M. It is easy to see that $\{0\}$ is not a positive implicative ideal of M.

In following, we verify the relationship between ultra ideals and positive implicative (prime) ideals.

Theorem 4.2 Let I be an ultra ideal of M.

(i) I is a positive implicative ideal of M, (ii) I is a prime ideal of M.

Proof. (i) Let $(z \odot y) \ominus x \in I$, $y \ominus x \in I$, where $x, y, z \in M$. We must show that $z \ominus x \in I$. Let $z \ominus x \notin I$. Then $(z \ominus x)' \in I$. Since $x \ominus (z \ominus x)' = x \ominus (z \ominus x) = x \ominus (z \ominus x') = 0 \in I$, we get $x \notin I$. Now, since $y \ominus x$, $x \in I$, we have $y \in I$. On the other hand, by Theorem 2.1 and (BCK6), since $(z \ominus x) \odot y = (z \ominus y) \ominus x \notin I$, we have $z \ominus x \in I$, which is a contradiction. Therefore, I is a positive implicative ideal of M.

(ii) If I is not a prime ideal of M, then there exist $x, y \in M$ such that $x \ominus y \notin I$ and $y \ominus x \notin I$. Since I is an ultra ideal of M, we have $(x \odot y)' \in I$ and $(y \odot x)' \in I$. Then $1 = (x' \odot y) \ominus (y' \odot x) = (x \ominus y)' \ominus (y \ominus x)' \in I$, which is a contradiction. Therefore, I is a prime ideal of M.

Example 4.3 (i) In Example 4.1, K is a positive implicative ideal, but it is not an ultra ideal.

(ii) In example 4.2 (i), $\{0\}$ is a prime ideal of M, but it is not an ultra ideal of M.

(iii) In example 4.2 (iii), $\{0\}$ is neither a positive implicative ideal of M nor an ultra ideal of M. Also, $\{0\}$ is not a prime ideal of M.

Definition 4.2 Let M be an MV-algebra. $B \subseteq M$ is said to have the finite union property if $a_1 \oplus a_2 \oplus \cdots \oplus a_n \neq 1$, for any $a_1, \cdots, a_n \in B$ and $a_i \neq 1$, where $1 \leq i \leq n$.

Example 4.4 In Example 4.1, $B = \{0, 1, 2\}$ has finite union property, but $C = \{2, 3\}$ has not finite union property (note that $2 \oplus 3 = 4$).

Theorem 4.3 Let M be an MV-algebra, $B \subseteq A$ and $1 \notin B$. Then $\langle B \rangle$ is a proper ideal of M if and only if B has the finite union property.

Proof. (\Rightarrow) Let $\langle B \rangle$ be a proper ideal of M and B has not the finite union property. Then there exist $a_1, \cdots, a_n \in B$ such that $a_1 \oplus a_2 \oplus \cdots \oplus a_n = 1$. By Lemma 2.2, $1 \in \langle B \rangle$ and so $\langle B \rangle = M$, which is a contradiction.

(\Leftarrow) Let B has the finite union property and $\langle B \rangle = M$. Then $1 \in \langle B \rangle$ and so by Lemma 2.2, there exist $a_1, \cdots, a_n \in B$ such that $a_1 \oplus a_2 \oplus \cdots \oplus a_n \geq 1$, which is a contradiction.
Note. It is easy to see that every non trivial ideal of an MV-algebra has the finite union property. The proof is similar to the proof of Theorem 4.3 (⇒).

Lemma 4.1 Let M be an MV-algebra, $x \in M$ and I be an ideal of M such that I have the finite union property. If $x \notin I$ and $x' \notin I$, then $I \cup \{x\}$ has the finite union property.

Proof. Let $B = I \cup \{x\}$. We will show that $b_1 + b_2 + \cdots + b_n \neq 1$, for any $b_1, \ldots, b_n \in B$ and $b_i \neq 1$. If $b_1, \ldots, b_n \in I$, then the proof is clear.

If W. O. L. G, $b_1 = x$ and $b_1 + b_2 + \cdots + b_n = 1$, for some $b_1, \ldots, b_n \in B$, then $(x' \otimes (b_2 + \cdots + b_n'))' = x' \otimes (b_2 + \cdots + b_n) = 1$ and so $x' \notin I$. Since $b_1 + \cdots + b_n \in I$, by Proposition 3.1(1), we have $x' \in I$, which is a contradiction. Therefore, $b_1 + b_2 + \cdots + b_n \neq 1$, for any $b_1, \ldots, b_n \in B$ and so $I \cup \{x\}$ has the finite union property.

Theorem 4.4 Let M be an MV-algebra and $I \subseteq M$. Then I is an ultra ideal of M if and only if I is a non trivial maximal ideal of M.

Proof. (\Rightarrow) Let I be an ultra ideal of M, and J is not a maximal ideal of M. Then there exists a proper ideal J of M such that $I \subseteq J$ and so there exists $x \in J$ such that $x \notin I$. It results that $x' \in I$ and so $x' \in J$. Since $1 \otimes x = 1 \otimes x' = (0 \otimes x')' = x' \in J$ and $x \in J$, we get $1 \in J$, which is a contradiction.

(\Leftarrow) Let I be a maximal ideal of M. If $x \in I$ and $x' \in I$, for some $x \in M$, then $1 \in I$, which is a contradiction. Hence, $x \in I$ implies that $x' \notin I$. Now, let there exists $x \in A$ such that $x' \notin I$ and $x \notin I$. Consider $B = I \cup \{x\}$. Then by Lemma 4.1, B has the finite union property. Hence, by Theorem 4.3, $\prec B \succ$ is a proper ideal of M, which is a contradiction. Because, $I \subseteq \prec B \preceq M$ and I is a maximal ideal of M. Hence, $x' \notin I$ implies that $x \in I$. Therefore, I is an ultra ideal of M.

Lemma 4.2 Let M be an MV-algebra and $I \subseteq M$. If I has the finite union property, then there exists an ultra ideal B of M such that $I \subseteq B$.

Proof. Let $E = \{B : I \subseteq B, \text{where } B \text{ is a proper ideal of } M\}$. Since I has the finite union property, by Theorem 4.3, $\prec I \succ$ is a proper ideal of M. Since $I \subseteq \prec I \succ$, we have $\prec I \succ \subseteq E$ and so $E \neq \emptyset$. Let $F = \{B_t\}_{t \in N}$ be a chain in E and $B_1 = \bigcup_{t \in N} B_t$. Since B_1 is an upper bound of F in E and B_1 is an ideal of M, $B_1 \subseteq E$. Hence, by Zorn’s lemma, E has a maximal element B and so by Theorem 4.4, B is an ultra ideal of M such that $I \subseteq B$.

Theorem 4.5 Any proper ideal in MV-algebra M, contained at least one ultra ideal.

Proof. Let I be a proper ideal of M. Since $I \subseteq \prec I \succ$, by Theorem 4.3, I has the finite union property and so by Lemma 4.2, there exists an ultra ideal B of M such that $I \subseteq B$.

5 Contraction and Extension of ideals in MV-algebras

In this section, we verify some properties on contracted or extended ideals as useful examples of ideals in MV-algebras. Also, we try to prove the Chinese reminder theorem in MV-algebras.

Remark: Let M, N be MV-algebras, $f : M \rightarrow N$ be an MV-homomorphism, $I \subseteq M$ and J be an ideal of N. Then we set $f^{-1}\langle J \rangle = J^c$ and $\langle f(I) \rangle = I^e$. It is clear that J^c (contraction of J) is an ideal of M and I^e (extension of I) is an ideal of N.

Theorem 5.1 Let M, N be MV-algebras, $f : M \rightarrow N$ be an MV-homomorphism, I be an ideal of M and J be an ideal of N. Then

(i) $I \subseteq I^e$,

(ii) $J^c \subseteq J$,

(iii) $J^c = J^{cc}$,

(iv) $I^e = I^{ce}$,

(v) If $K = \{I : I$ is an ideal of M and $I^{cc} = I\}$, $E = \{J : J$ is an ideal of N and $J^{cc} = J\}$, $K' = \{J^c : J$ is an ideal of $N\}$ and $E' = \{I^e : I$ is an ideal of $M\}$, then $K = K'$, $E = E'$ and there exists an isomorphism $\Phi : K \rightarrow E$.

Proof.

(i) The proof is clear.

(ii) Let $y \in J^{ce} = \prec f(J^c) \succ$. Then there exist $t_1, t_2, \ldots, t_k \in J^c$ such that $y \leq f(t_1) + \cdots + f(t_k)$ and so $y \leq f(f^{-1}(a_1)) + \cdots + f(f^{-1}(a_k))$, where $f(t_i) = a_i \in J$, for any $1 \leq i \leq k$. It results that $y \leq a_1 + \cdots + a_k$ and so $y \in \prec J \succ = J$. Hence,
If ideal (note that every
Consider by
In Theorem That
It is not necessary that

Example 5.1 (i) In example 3.1, let f : M → M be zero homomorphism. Consider I = \{0\} that is an ideal of M. We have I^c = < f(I) > = \{0\} and I^c = M. Then I \neq I^c.
(ii) In Example 3.1, let f : M → M be defined by f(0) = f(1) = 0 and f(2) = f(3) = 3. It is easy to see that f is an MV-homomorphism. Consider J = \{0\} that is an ideal of M. We have J^c = \{0, 1\} and J^c = < \{0, 1\} > = \{x ∈ M : x ≤ w_1 + ⋯ + w_n, for some w_1, ⋯, w_n ∈ \{0, 1\}\} = \{0, 1\}. Hence J^c \neq J.

Definition 5.1 [10] Let I be an ideal of an MV-algebra M. Then we set \text{rad}(I) = \bigcap_{i≤m} m, where m is any maximal ideal of M. Moreover, if there is not any maximal ideal of M containing I, then we let \text{rad}(I) = M.

Notation: By Corollary 2.1, any proper ideal of a PMV-algebra is contained in a maximal ideal (note that every PMV-algebra is an MV-algebra).

Theorem 5.2 Let M, N be MV-algebras, I_1, I_2, I be ideals of M, J_1, J_2, J be ideals of N and f : M → N be an MV-homomorphism. Then
(i) (I_1 ∩ I_2)^c \subseteq I_1^c ∩ I_2^c,
(ii) (J_1 ∩ J_2)^c = J_1^c ∩ J_2^c,
(iii) (I_1 ⊕ I_2)^c \subseteq (f(I_1) ⊕ f(I_2))^c, where I_1 ⊕ I_2 = \{a + b : a ∈ I_1, b ∈ I_2\},
(iv) \text{rad}(I)^c \subseteq \text{rad}(I^c),
(v) \text{rad}(J^c) \subseteq (\text{rad}(J))^c.

Proof. (i) Let y ∈ (I_1 ∩ I_2)^c. Then by Lemma 2.2, there exist a_1, ⋯, a_n ∈ I_1 ∩ I_2 such that y ≤ f(a_1) + ⋯ + f(a_k). Since a_i ∈ I_1 and a_i ∈ I_2, we have f(a_i) ∈ f(I_1) and f(a_i) ∈ f(I_2), for any 1 ≤ i ≤ n. It results that y ∈ I_1^c ∩ I_2^c.
(ii) The proof is routine.
(iii) Let y ∈ (I_1 ∩ I_2)^c. Then by Lemma 2.2, there exist a_1 + b_1 ∈ I_1 ∩ I_2, for any 1 ≤ i ≤ n such that y ≤ f(a_1 + b_1) + ⋯ + f(a_n + b_n) = f(a_1) + f(b_1) + ⋯ + f(a_n) + f(b_n). It results that y ∈ (f(I_1) ∩ f(I_2))^c.
(iv) Let y ∈ (\text{rad}(J))^c = < f(\bigcap_{i≤K} K) >, where K is every maximal ideal of M. Then there exist a_1, ⋯, a_k ∈ \bigcap_{i≤K} K such that y ≤ f(a_1) + ⋯ + f(a_k). We must show that y ∈ \bigcap_{i≤K} K, where L is any maximal ideal of N containing < f(K) >. We have a_i ∈ K, for any maximal ideal of M containing I. Then f(a_i) ∈ f(K) < < f(K) >. Let < f(K) > \neq N. Then by above Notation, f(a_i) ∈ n, where L is a maximal ideal of N containing < f(K) > (if < f(K) > = N, then there is no maximal ideal of N containing < f(K) > and so by definition of 5.1, we consider L = N). On the other hand, I ⊆ K implies that < f(I) > ⊆ < f(K) > ⊆ L. It results that f(a_i) ∈ \bigcap_{i≤K} L = \text{rad}(I).
(v) Let x ∈ (\text{rad}(J))^c = f^{-1}(\bigcap_{i≤L} L), where L is any maximal ideal of N. Then f(x) ∈ \bigcap_{i≤L} L \subseteq L and so x ∈ f^{-1}(L) = L^c. It results that x ∈ \bigcap_{i≤L} L^c = \bigcup_{j≤L^c} L^c and so by Proposition 2.1, x ∈ \text{rad}(J^c). Hence, (\text{rad}(J))^c \subseteq \text{rad}(J^c).

Lemma 5.1 Let A be a PMV-algebra. Then \bigcap_{i≤I} A = A ⊕ A ⊕ ⋯ ⊕ A is a PMV-algebra.

Proof. We define \{a_i\}_{i=1}^n + \{b_i\}_{i=1}^n = \{a_i + b_i\}_{i=1}^n, \{a_i\}_{i=1}^n \cdot \{b_i\}_{i=1}^n = \{a_i b_i\}_{i=1}^n and \{(a_i)_{i=1}^n\} = \{a_i\}_{i=1}^n, for every \{a_i\}_{i=1}^n, \{b_i\}_{i=1}^n ∈ \bigcap_{i≤I} A. It is easy to show that (\bigcap_{i≤I} A, ⊕, ⋯, \{0\}) is a PMV-algebra.

Theorem 5.3 Let M be an MV-algebra and I_1, ⋯, I_n be ideals of M. Then there exists an MV-homomorphism Φ : M → M that is an MV-monomorphism if and only if
(i)\bigcap_{i=1}^n I_i = \{0\},
(ii) if Φ is onto, then \bigcap_{i=1}^n I_i = M, for any 1 ≤ i, j ≤ n, where I_i \bigoplus I_j = \{a + b : 0 \leq a \in I_i, b \in I_j\}.

(iii) if \(y = (\frac{x_a}{M_i}, \cdots, \frac{x_n}{M_i}) \in \sum_{i=1}^n M_i \) implies that \(x_i \cap \bigwedge_{i=1}^n x_i \in I_i \), then \(\phi \) is onto.

Proof. By Lemma 5.1, \(\sum_{i=1}^n M_i \) is an \(MV \)-algebra (note that every \(PMV \)-algebra is an \(MV \)-algebra). We define \(\Phi(a) = (\frac{a}{I_1}, \cdots, \frac{a}{I_n}) \), for any \(a \in M \). It is clear that \(\Phi(0) = 0 \). It is easy to show that \(\Phi(a + b) = \Phi(a) + \Phi(b) \), for any \(a, b \in M \). We have \(\Phi(a') = (\frac{a}{I_1}, \cdots, \frac{a}{M_i}) = (\phi(a))' \). Hence, \(\phi \) is an \(MV \)-homomorphism.

\(i \) Let \(\phi \) be an \(MV \)-monomorphism. Then by Lemma 2.3(iv), \(Ker(\phi) = \{0\} \). If \(a \in \sum_{i=1}^n I_i \), then \(a \in I_i \) and so \(d(a,0) = a \in I_i \), for any \(1 \leq i \leq n \). It means that \(\frac{a}{I_i} = \frac{a}{I_i} \) and so \(\Phi(a) = (\frac{a}{I_1}, \cdots, \frac{a}{I_n}) = (\frac{0}{I_1}, \cdots, \frac{0}{I_n}) = 0 \). Hence, \(a \in Ker(\phi) = \{0\} \). It results that \(\sum_{i=1}^n I_i = \{0\} \). Similarly, if \(\sum_{i=1}^n I_i = \{0\} \), then \(Ker(\phi) = \{0\} \) and so \(\phi \) is an \(MV \)-monomorphism.

\(ii \) Let \(\phi \) be an \(MV \)-epimorphism. We show that \(\cap I_i \cap I_j \geq M \). Since \(0,1 \in M \), we have \((\frac{1}{I_1}, \frac{0}{I_2}, \cdots, \frac{0}{I_n}) \in \sum_{i=1}^n M_i \). Since \(\phi \) is onto, there exists \(x \in M \) such that \(\phi(x) = (\frac{1}{I_1}, \cdots, \frac{0}{I_n}) \). It results that \(x' = d(1, x) \in I_1 \), \(x = d(0, x) \in I_2 \) and so \(1 = x' \oplus x \in I_1 \oplus I_2 \). It means that \(\cap I_1 \cap I_2 \geq M \). Similarly, we can show that \(\cap I_i \cap I_j \geq M \), for any \(1 \leq i, j \leq n \).

\(iii \) Let \(y = (\frac{x_a}{M_i}, \cdots, \frac{x_n}{M_i}) \in \sum_{i=1}^n M_i \). Then we consider \(x = \bigwedge_{i=1}^n x_i \). Since \(x \leq x_i \in I_i \), we have \(x \in I_i \). Since \(d(x, x_i) = (x \ominus x_i) \oplus (x_i \ominus x) = 0 \oplus (x_i \ominus x) \in I_i \), we have \(\frac{x}{I_i} = \frac{x_i}{I_i} \) for any \(1 \leq i \leq n \). It means that \(\phi(x) = (\frac{x}{I_1}, \cdots, \frac{x}{I_n}) = (\frac{x_1}{I_1}, \cdots, \frac{x_n}{M_i}) = y \). Therefore, \(\phi \) is an \(MV \)-epimorphism.

6 Conclusion

We obtained some new results in ideals theory and opened new fields to anyone that is interested to studying and development of ideals in \(MV \)-algebras.

References

R. A. Borzooei is full professor at the Shahid Beheshti University. He is currently an Managing Editor and fonder of the Iranian Journal of Fuzzy Systems, and was an editorial board 5 journals. He published more than 220 publications in journals on logical algebras, algebraic hyper structuers, and fuzzy graph theory.