[1] A. Abdollahi, E. Babolian, Theory of blockpulse functions in numerical solution of Fredholm integral equations of the second kind,Int. J. Industrial Mathematics 8 (2016) 157-163.
[2] R. R. Ahmad, N. Yaacob, Third-order composite Runge-Kutta method for stiff problems, International Journal of Computer Mathematics 82 (2006) 1221-1226.
[3] E. Babolian, A. Abdollahi, S. Shahmorad, Chain least squares method and ill-posed problems, Iranian Journal of Science & Technology 38 (2014) 123-132.
[4] E. Babolian, L. M. Delves, An augmented Galerkin method for first kind Fredholm equations, J. Inst. Maths. Applics 24 (1979) 157-174.
[5] E. Babolian, T. Lotfi, M. Paripour, Wavelet moment method for solving Fredholm integral equations of the first kind, Applied Mathematics and Computation 186 (2007) 1467-1471.
[6] C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, New York, (1989).
[7] A. V. Bitsadze, Integral Equations of First Kind, World Scientific Publishing Co. Pte. Ltd., (1995).
[8] N. M. Bujurke, C. S. Salimath, S. C. Shiralashetti, Numerical solution of stiff systems from nonlinear dynamics using singleterm Haar wavelet series, Nonlinear Dynamics 51 (2008) 595-605.
[9] B. N. Datta, Numerical Linear Algebra and Applications Second Edition, SIAM, (2010).
[10] L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, (1985).
[11] H. Ernst, W. Gerhard, Solving ordinary differential equations II: Stiff and differentialalgebraic problems, Springer-Verlag, New York, (1996).
[12] B. Faleichik, I. Bondar, V. Byl, Generalized Picard iterations: A class of iterated Runge Kutta methods for stiff problems, Journal of Computational and Applied Mathematics 262 (2014) 37-50.
[13] P. A. Farrell, Uniform and optimal schemes for stiff initial value problems, Comput. Math. Applic. 13 (1987) 925-936.
[14] S. Faure, M. M. Tekitek, R. Temam, Finite volume approximation of stiff problems on 30 A. Abdollahi et al., /IJIM Vol. 12, No. 1 (2020) 23-30 two-dimensional curvilinear domain, International Journal of Computer Mathematics 93 (2015) 1787-1799.
[15] F. Goharee, E. Babolian, A. Abdollahi, Modified chain least squares method and some numerical results, Iranian Journal of Science & Technology 38 (2014) 91-99.
[16] C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Research Notes in Mathematics, Boston MA, (1984).
[17] C. Hsiao, Numerical solution of stiff differential equations via Haar wavelets, International Journal of Computer Mathematics 82 (2006) 1117-1123.
[18] R. Kress, Linear Integral Equations, Springer-Verlag, (1999).
[19] R. Kress, Numerical Analysis, SpringerVerlag, New York, (1998).
[20] H. N. Mhaskar, D. V. Pai, Fundamentals of Approximation Theory, DAlpha Science International Ltd. (2000).
[21] P. Novati, A class of explicit one-step methods of order two for stiff problems, Journal of Numerical Mathematics 13 (2005) 219-236.
[22] R. I. Okuonghae, M. N. O. Ikhile, A class of hybrid linear multistep methods with Astability properties for stiff IVPs in ODEs, Journal of Numerical Mathematics 21 (2013) 157-172.
[23] D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Ass. Comput. Mach. 9 (1962) 84-96.
[24] J. I. Ramos, Linearization techniques for singularity-perturbed initial-value problems of ordinary differential equations, Applied Mathematics and Computation 163 (2005) 1143-1163.
[25] W. Rudin, Principles of Mathematical Analysis 3nd ed., McGraw-Hill, New York, (1976).
[26] R. E. Scraton, Some L-stable methods for stiff differential equations, International Journal of Computer Mathematics 9 (2007) 81-87.
[27] A. N. Tikhonov, A. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems Dordrecht, Boston, (1995).