Solving robot selection problem by a new interval-valued hesitant fuzzy multi-attributes group decision method

S. M. Mousavi *, B. Vahdani ††, H. Gitinavard ‡, H. Hashemi ¶

Received Date: 2014-Dec-11 Revised Date: 2015-Dec-30 Accepted Date: 2016-Jan-01

Abstract

Selecting the most suitable robot among their wide range of specifications and capabilities is an important issue to perform the hazardous and repetitive jobs. Companies should take into consideration powerful group decision-making (GDM) methods to evaluate the candidates or potential robots versus the selected attributes (criteria). In this study, a new GDM method is proposed by utilizing the complex proportional assessment method under interval-valued hesitant fuzzy (IVHF)-environment. In the proposed method, a group of experts is established to evaluate the candidates or alternatives among the conflicted attributes. In addition, experts assign their preferences and judgments about the rating of alternatives and the relative importance of each attribute by linguistic terms which are converted to interval-valued hesitant fuzzy elements (IVHFEs). Also, the attributes weights and experts weights are applied in procedure of the proposed interval-valued hesitant fuzzy group decision-making (IVHF-GDM) method. Hence, the experts opinions about the relative importance of each attribute are considered in determination of attributes weights. Thus, we propose a hybrid maximizing deviation method under uncertainty. Finally, an illustrative example is presented to show the feasibility of the proposed IVHF-GDM method and also the obtained ranking results are compared with a recent method from the literature.

Keywords : Robot selection problem; Group decision making analysis; Interval-valued hesitant fuzzy sets.

1 Introduction

In a competitive marketing environment, selecting the most suitable robot is an important role to achieve the best quality product for some companies. In this respect, companies should be taken into account the best robot among some candidate robots versus their characteristics. Therefore, decision-making approaches are powerful tools to deal with this condition. Hence, some researchers are solved their robot selection problems based on the precise information [2, 21, 22].

In this regard, some decision methods and studies have been presented to solve the robot selection problems. Thus, Bhangale et al. [1] proposed a methodology based on the TOPSIS and graphical methods, and then compared the ranking results of two methods. Karsak and Ahiska [13] implemented an applicable common
weight multi-attribute decision-making (MADM) methodology with an enhanced distinguishing power. Bhattacharya et al. [2] incorporated the quality function deployment and AHP methods to solve robot selection problem based on four candidates or alternatives and seven selected attributes (criteria). Chatterjee et al. [4] implemented two types of MADM methods, i.e. ELECTRE II and VIKOR methods. Also, Singh and Rao [25] extended a hybrid decision-making method based on incorporating the matrix approach and graph theory along with AHP method.

In real-life complex decision-making problems, the preferences and judgments of experts are difficult to be expressed precisely. In this case, the experts should define their opinions under fuzzy environments. Fuzzy sets theory has been first defined by Zadeh [33]; this theory and its extension have been widely utilized in imprecise conditions to solve the decision-making problems [9, 10, 11, 16, 17, 18, 19, 26, 28, 29]. The fields can consist of management [3, 15], pattern recognition [6, 20] artificial intelligence [30] and robot selection problems [12, 14].

In this respect, to solve the industrial robot selection problem based on decision-making analysis under the fuzzy environment, Devi [7] developed VIKOR method under an intuitionistic fuzzy environment, in which the evaluating the candidate robots and the attributes weights are defined by triangular intuitionistic fuzzy sets. Samantra et al. [24] presented an interval-valued trapezoidal fuzzy VIKOR method to deal with uncertainty in solving the decision-making problems. Vahdani et al. [27] developed a complex proportional assessment method based on the interval-valued fuzzy sets regarding to the objective information and subjective judgments. Rashid et al. [23] proposed a generalized interval-valued trapezoidal fuzzy TOPSIS method according to the subjective judgment and objective information. In their method, the experts opinions are aggregated on different attributes.

The investigation of the literature shows that applying the extensions of fuzzy sets theories are the powerful tools to solve the industrial robot selection problems under uncertainty. In this respect, one of the most appropriate tools is the interval-valued hesitant fuzzy sets. Vahdani et al. [27] presented an interval-valued hesitant fuzzy TOPSIS method based on the interval-valued fuzzy sets regarding to the objective information and subjective judgments. Rashid et al. [23] proposed a generalized interval-valued trapezoidal fuzzy TOPSIS method according to the subjective judgment and objective information. In their method, the experts opinions are aggregated on different attributes.

In this section, some operators in an interval-valued hesitant fuzzy setting are expressed which are applied in the proposed IVHF-GDM method.

Definition 2.1 Consider X is a universe set, and then the IVHFS on this set is represented as follows:

$$\tilde{E} = \left\{ \langle x_i, \tilde{h}_E(x_i) \rangle | x_i \in X, i = 1, 2, ..., n \right\} \quad (2.1)$$

where $\tilde{h}_E(x_i)$ is defined as an interval membership degree for an object $x_i \in X$ under set E.

Definition 2.2 [5], Consider three interval-valued hesitant fuzzy elements (IVHFE) as \tilde{h}, \tilde{h}_1 and \tilde{h}_2, then some basic relations are represented
as follows:

\[
\tilde{h}_c = \left\{ \left[1 - \tilde{\gamma}^U, 1 - \tilde{\gamma}^L \right] \mid \tilde{\gamma} \in \tilde{h} \right\};
\]

\[
\tilde{h}_\lambda = \left\{ \left[(\tilde{\gamma}^L)^\lambda, (\tilde{\gamma}^U)^\lambda \right] \mid \tilde{\gamma} \in \tilde{h} \right\};
\]

\[
\lambda \tilde{h} = \left\{ \left[1 - (1 - \tilde{\gamma}^L)^\lambda, 1 - (1 - \tilde{\gamma}^U)^\lambda \right] \mid \tilde{\gamma} \in \tilde{h} \right\}, \lambda > 0;
\]

\[
\tilde{h}_1 \oplus \tilde{h}_2 = \left\{ \left[\tilde{\gamma}_1^L + \tilde{\gamma}_2^L - \tilde{\gamma}_1^L \tilde{\gamma}_2^L, \tilde{\gamma}_1^U + \tilde{\gamma}_2^U - \tilde{\gamma}_1^U \tilde{\gamma}_2^U \right] \mid \tilde{\gamma}_1 \in \tilde{h}_1, \tilde{\gamma}_2 \in \tilde{h}_2 \right\};
\]

\[
\tilde{h}_1 \otimes \tilde{h}_2 = \left\{ \left[\tilde{\gamma}_1^L \tilde{\gamma}_2^L, \tilde{\gamma}_1^U \tilde{\gamma}_2^U \right] \mid \tilde{\gamma}_1 \in \tilde{h}_1, \tilde{\gamma}_2 \in \tilde{h}_2 \right\}.
\]

Definition 2.3 [5], The hesitant interval-valued fuzzy geometric (HIVFG) aggregation operator is demonstrated as follows:

\[
\text{HIVFG}(\tilde{h}_1, \tilde{h}_2, \ldots, \tilde{h}_n) = \left(\bigoplus_{j=1}^n (\tilde{h}_j)^{w_j} \right)_{\text{h}} = \bigcup_{\tilde{\gamma}_1 \in \tilde{h}_1, \tilde{\gamma}_2 \in \tilde{h}_2, \ldots, \tilde{\gamma}_n \in \tilde{h}_n} \left\{ \Pi_{j=1}^n (\gamma_j^L)^{w_j}, \Pi_{j=1}^n (\gamma_j^U)^{w_j} \right\}.
\]

Definition 2.4 [31], The hesitant interval-valued fuzzy weighted geometric (HIVFWG) aggregation operator is represented as follows:

\[
\text{HIVFWG}(\tilde{h}_1, \tilde{h}_2, \ldots, \tilde{h}_n) = \left(\bigoplus_{j=1}^n (\tilde{h}_j)^{w_j} \right)_{\text{h}} = \bigcup_{\tilde{\gamma}_1 \in \tilde{h}_1, \tilde{\gamma}_2 \in \tilde{h}_2, \ldots, \tilde{\gamma}_n \in \tilde{h}_n} \left\{ \Pi_{j=1}^n (\gamma_j^L)^{w_j}, \Pi_{j=1}^n (\gamma_j^U)^{w_j} \right\}.
\]

where the weight vector of \(\tilde{h}_j (j = 1, \ldots, n) \) is indicated by \(w = (w_1, w_2, \ldots, w_n)^T \) and \(w_j > 0, \sum_{j=1}^n w_j = 1 \).

\[
\text{Score}(\tilde{M}) = \frac{1}{n} \left(\frac{1}{\sum_{j=1}^{l_i} \left[\frac{h_M^{\sigma(j)U}(x_i) + h_N^{\sigma(j)U}(x_i)}{2} \right] } \right)
\]

Definition 2.5 [8], Two types of ordering in an interval-valued hesitant fuzzy setting are defined. In this respect, the component-wise ordering and the total ordering are indicated, respectively, as follows. Let \(\tilde{M} \) and \(\tilde{N} \) consider as two IVHFSs on \(X \).

\[
\tilde{M} \preceq \tilde{N} \text{ if } h_M^{\sigma(j)L}(x_i) \leq h_N^{\sigma(j)L}(x_i),
\]

\[
h_M^{\sigma(j)U}(x_i) \leq h_N^{\sigma(j)U}(x_i), \forall i = 1, 2, \ldots, m
\]

\[
\forall j = 1, 2, \ldots, n.
\]

Definition 2.6 [34], The normalized interval-valued hesitant fuzzy decision matrix can be obtained by applying the following relation:

\[
b_{ij} = \frac{\gamma_{ij}^L}{\gamma_{ij}^U} \quad \text{for posetive criteria}
\]

\[
b_{ij} = \frac{\gamma_{ij}^U}{\gamma_{ij}^L} - 1 \quad \text{for negative criteria}
\]

\[
\forall i = 1, \ldots, m; \quad j = 1, \ldots, n
\]

3 Proposed IVHF-GDM method

Step 1. Specify significant attributes (criteria) which satisfy the potential candidate or alternatives.

Step 2. Establish the interval-valued hesitant fuzzy decision matrix by utilizing a group of experts.

\[
A_1 = \left[\begin{array}{c} \left[\mu_{11}^{L1}, \mu_{11}^{U1} \right], \left[\mu_{11}^{L2}, \mu_{11}^{U2} \right] \end{array} \right],
\]

\[
M = \left[\begin{array}{c} \vdots \end{array} \right], \quad A_m = \left[\begin{array}{c} \left[\mu_{m1}^{L1}, \mu_{m1}^{U1} \right], \left[\mu_{m1}^{L2}, \mu_{m1}^{U2} \right] \end{array} \right],
\]
each attribute based on the extended maximizing Xu and Zhang \[Step 4.2\]. The maximizing deviation method for expert.

where variables regarding to the experts judgments. Aggregate the relative significance of on a hybrid maximizing deviation method. Calculate the attributes weights based regarding the following relations:

\[
\{ [\mu_{11}^{l1}, \mu_{11}^{u1}] \} \ldots \\
\{ [\mu_{mn}^{l1}, \mu_{mn}^{u1}] \} \quad (3.12)
\]

\[
\ve_j = H_{IV} F_{G}(\bar{h}_1, \bar{h}_2, \ldots, \bar{h}_n)
\]

\[
= \bigoplus_{k=1}^{K} \left(\frac{\lambda_k^{l1} \bar{h}_k}{k} \right) \frac{1}{k}
\]

\[
= \bigcup_{\gamma_1 \in \bar{h}_1, \gamma_2 \in \bar{h}_2, \ldots, \gamma_k \in \bar{h}_k} \left\{ \frac{1}{k} \lambda_k^{l1} \gamma_k + \frac{1}{k} \lambda_k^{u1} \gamma_k \right\}
\]

\[
\left(\frac{1}{2} \right)^{-\frac{1}{2}} (3.16)
\]

where the normalized optimal weight vector is computed as follows:

\[
\omega_j^* = \frac{\omega_j}{\sum_{j=1}^{n} \omega_j}, \quad j = 1, 2, \ldots, n. \quad (3.17)
\]

\[
\omega_j = \left[\ve_j \frac{\sum_{i=1}^{m} \sum_{k=1}^{l} \left(\frac{1}{2} \sum_{\lambda=1}^{l} \left(h_{ij}^{(\lambda)l} - h_{kj}^{(\lambda)l} \right) \right) + \left(h_{ij}^{(\lambda)u} - h_{kj}^{(\lambda)u} \right) \right) \sum_{j=1}^{n} \sum_{i=1}^{m} \sum_{k=1}^{l} \left(\lambda_{ij}^{(\lambda)l} - \lambda_{kj}^{(\lambda)l} \right) \right)^{1/2} \right]^{1/2}
\]

\[
\left(1 - X_j \right) \left[\Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \right], \quad \Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \forall i,
\]

\[
\left(1 - X_j \right) \left[\Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \right], \quad \Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \forall i, \quad (3.18)
\]

\[
R_i^P / R_i^N = \left\{ \begin{array}{ll} R_i^P & \forall X_j = 0 \text{ for positive attribute}(j) \\ R_i^N & \forall X_j = 0 \text{ for negative attribute}(j) \end{array} \right\} \quad (3.19)
\]

\[
R_{i_{\text{min}}} = \left[\min_i \left(R_{i_{\text{min}}}^N \right) \right], \quad \forall k \quad (3.20)
\]

Step 3. Compute the experts weights by considering the following relations:

\[
\lambda_j^L = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{ij}^{kL}}{\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{ij}^{kL}} \quad (3.13)
\]

\[
\lambda_j^U = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{ij}^{kU}}{\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{ij}^{kU}} \quad (3.14)
\]

Step 4. Calculate the attributes weights based on a hybrid maximizing deviation method.

Step 4.1. Aggregate the relative significance of attributes weights which specified by linguistic variables regarding to the experts judgments.

\[
\ve_j = \left(\bigcup_{\gamma_1 \in \bar{h}_1, \gamma_2 \in \bar{h}_2, \ldots, \gamma_k \in \bar{h}_k} \left\{ \frac{1}{k} \lambda_k^{l1} \gamma_k + \frac{1}{k} \lambda_k^{u1} \gamma_k \right\} \right)
\]

Step 4.2. The maximizing deviation method for determining the attributes weights is defined by Xu and Zhang \[32\]. We specify the final weight of each attribute based on the extended maximizing deviation method and regarding to the experts opinions about the attributes weights.

Step 5. Establish the weighted normalized interval-valued decision matrix regarding to the attributes weights.

Step 6. Specify sums of positive attribute values \(R_i^P \) and sums of negative attribute values \(R_i^N \) by using the following relations, respectively:

\[
R_i^P = (1 - X_j) \left[\Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \right],
\]

\[
R_i^N = X_j \left[\Pi_{k=1}^{K} \left(1 - \Pi_{j=1}^{n} \left(1 - \mu_{ij}^{k} \right) \right) \frac{1}{k} \right],
\]

\[
R_i^P / R_i^N = \left\{ \begin{array}{ll} R_i^P & \forall X_j = 0 \text{ for positive attribute}(j) \\ R_i^N & \forall X_j = 0 \text{ for negative attribute}(j) \end{array} \right\} \quad (3.18)
\]

\[
R_{i_{\text{min}}} = \left[\min_i \left(R_{i_{\text{min}}}^N \right) \right], \quad \forall k \quad (3.20)
\]
Step 8. Determine the relative significance of each candidate potential alternative as follows:
\[
Q_i = \left(R_i^{lp} + (1 - R_i^{lp}) \times \left(1 - \left(\prod_i^m (1 - R_i^{lp})^{R_{\text{min}}^N} \right) \right) \right)_{\forall i} \tag{3.21}
\]

Step 10. The utility degree for each potential alternative is computed as below:
\[
N_i = \left[\frac{Q_i^l}{\max(Q_l^i)} \times \frac{Q_i^n}{\max(Q_n^i)} \right] 100\% \tag{3.22}
\]

Step 11. Select the best candidate alternative which has maximum value of utility degree regarding to ordering relation.

4 Illustrative example

In this section, an illustrative example which is adopted from Vahdani et al. [27] is presented to indicate the procedure of the proposed IVHF-multi-criteria group decision method. In addition, the proposed method is compared with Vahdani et al. [27] method to show the feasibility of the proposed method. In an illustrative example, there is a manufacturing company which requires a robot to perform the material handling. In this case, three robots \(R_i, i = 1, 2, 3 \) are considered as alternatives and also sixth attributes are selected. In addition, the candidate robots versus the conflicted attributes are evaluated based on the fourth experts judgments. The selected attributes are expressed as follows:

- Man-machine interface \((C1)\);
- Programming flexibility \((C2)\);
- Vendors service contract \((C3)\);
- Load capacity \((C4)\);
- Positioning accuracy \((C5)\); and
- Purchase cost \((C6)\).

The group of experts defines their preferences and judgments about the attributes significance and the rating of candidate robots among the selected attribute by linguistic variables and then, the linguistic variables are converted to the IVHF-FEs. The linguistic terms and their hesitant fuzzy values about the attribute importance and evaluating the candidate robots are listed in Table 1 and 2, respectively. In addition, the opinions of each expert about the assessment of robots versus the attributes and the weight of each attribute are demonstrated by linguistic variables in Tables 3 and 4.

The weight of each expert is computed by using Eqs. (3.13) and (3.14). In addition, the relative importance of each attribute based on the experts opinions is determined by utilizing the Eq. (3.15). Then, the optimal attributes weight is obtained based on Eqs. (3.16) and (3.17). The computational results of determining the experts weights and attributes weights are demonstrated in Table 5. Hence, the normalized interval-valued hesitant fuzzy decision matrix is obtained based on definition 2.6. Then, the weighted normalized interval-valued hesitant fuzzy decision matrix is established.

Sums of positive/negative attributes values are assessed by using Eqs. (3.18) and (3.19), respectively. Thus, the smallest value of sums for negative attribute value is specified based on Eq. (3.20). The results are reported in Table 6. Finally, the relative importance and the utility degree of each candidate potential alternatives are computed by Eqs. (3.21) and (3.22), respectively. The potential alternatives are ranked based on the total ordering. The mentioned results are represented in Table 7. In this case, the worst and the best candidate robots are obtained (i.e., the first and the third robots). The ranking results of proposed method is compared with Vahdani et al. [27] method which have the same results. Consequently, the proposed IVHF-GDM method is feasible and powerful regarding to their considerable characteristics under uncertainty.

5 Conclusions

The robot selection problem is a complex issue for some companies that reduce the production cost and increase the product quality. This paper proposed a group decision-making (GDM) method in an interval-valued hesitant fuzzy (IVHF)-setting by the complex proportional assessment to se-
Table 1: Linguistic variables for rating the importance of attributes

<table>
<thead>
<tr>
<th>Linguistic variables</th>
<th>Hesitant interval-valued fuzzy elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high (VH)</td>
<td>[0.90, 0.90]</td>
</tr>
<tr>
<td>High (H)</td>
<td>[0.75, 0.80]</td>
</tr>
<tr>
<td>Medium (M)</td>
<td>[0.50, 0.55]</td>
</tr>
<tr>
<td>Low (L)</td>
<td>[0.35, 0.40]</td>
</tr>
<tr>
<td>Very low (VL)</td>
<td>[0.10, 0.10]</td>
</tr>
</tbody>
</table>

Table 2: Linguistic variables for rating the potential alternatives

<table>
<thead>
<tr>
<th>Linguistic variables</th>
<th>Hesitant interval-valued fuzzy elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely good (EG)</td>
<td>[1.00, 1.00]</td>
</tr>
<tr>
<td>Very very good (VVG)</td>
<td>[0.90, 0.90]</td>
</tr>
<tr>
<td>Very good (VG)</td>
<td>[0.80, 0.90]</td>
</tr>
<tr>
<td>Good (G)</td>
<td>[0.70, 0.80]</td>
</tr>
<tr>
<td>Moderately good (MG)</td>
<td>[0.60, 0.70]</td>
</tr>
<tr>
<td>Fair (F)</td>
<td>[0.50, 0.60]</td>
</tr>
<tr>
<td>Moderately poor (MP)</td>
<td>[0.40, 0.50]</td>
</tr>
<tr>
<td>Poor (P)</td>
<td>[0.25, 0.40]</td>
</tr>
<tr>
<td>Very poor (VP)</td>
<td>[0.10, 0.25]</td>
</tr>
<tr>
<td>Very very poor (VVP)</td>
<td>[0.10, 0.10]</td>
</tr>
</tbody>
</table>

Table 3: Performance ratings of the alternatives in linguistic variables

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternatives</th>
<th>Decision makers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DM1</td>
</tr>
<tr>
<td>C1</td>
<td>R1</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>G</td>
</tr>
<tr>
<td>C2</td>
<td>R1</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>G F</td>
</tr>
<tr>
<td>C3</td>
<td>R1</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>G</td>
</tr>
<tr>
<td>C4</td>
<td>R1</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>F</td>
</tr>
<tr>
<td>C5</td>
<td>R1</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>G</td>
</tr>
<tr>
<td>C6</td>
<td>R1</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>F</td>
</tr>
</tbody>
</table>

lect the best candidate robot. In the proposed method, the preferences and judgments of decision makers were defined by linguistic terms which were transformed to interval-valued hesitant fuzzy elements (IVHFES). In addition, a hybrid maximizing deviation method was presented by incorporating the extended maximizing deviation method and the opinions of each decision maker about the relative significance of each attribute. In this respect, the optimal at-
Table 4: Decision makers judgments about attributes weights

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Decision makers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM_1</td>
</tr>
<tr>
<td>C_2</td>
<td>H</td>
</tr>
<tr>
<td>C_2</td>
<td>VH</td>
</tr>
<tr>
<td>C_2</td>
<td>M</td>
</tr>
<tr>
<td>C_2</td>
<td>VH</td>
</tr>
<tr>
<td>C_2</td>
<td>VH</td>
</tr>
<tr>
<td>C_2</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 5: Experts weights and the attributes weights

<table>
<thead>
<tr>
<th>λ_i^f</th>
<th>\tilde{v}_i</th>
<th>ω_i^j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.225080</td>
<td>[0.259560, 0.257426]</td>
<td>ω_1^f</td>
</tr>
<tr>
<td>0.191442</td>
<td>[0.229432, 0.233663]</td>
<td>ω_2^f</td>
</tr>
<tr>
<td>0.067535</td>
<td>[0.260718, 0.259406]</td>
<td>ω_3^f</td>
</tr>
<tr>
<td>0.237524</td>
<td>[0.250290, 0.249505]</td>
<td>ω_4^f</td>
</tr>
<tr>
<td>0.204737</td>
<td>[0.195990, 0.205804]</td>
<td>ω_5^f</td>
</tr>
<tr>
<td>0.073680</td>
<td>[0.114188, 0.126871]</td>
<td>ω_6^f</td>
</tr>
</tbody>
</table>

Table 6: Positive/negative attributes values and the minimum negative attributes value

<table>
<thead>
<tr>
<th>Robots</th>
<th>R_i^P</th>
<th>R_i^N</th>
<th>R_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>[0.394022, 0.455495]</td>
<td>[0.024919, 0.036293]</td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>[0.439182, 0.493126]</td>
<td>[0.039000, 0.050348]</td>
<td>[0.024919, 0.036293]</td>
</tr>
<tr>
<td>R_3</td>
<td>[0.464669, 0.516782]</td>
<td>[0.052696, 0.065202]</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Final Q_i values regarding to each DM

<table>
<thead>
<tr>
<th>Robots</th>
<th>Q_i</th>
<th>N_i</th>
<th>Total ordering</th>
<th>Ranked by the proposed IVHF-GDM method</th>
<th>Ranked by Vahdani et al. [27] method</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>[0.395818, 0.458570]</td>
<td>[84.8929, 88.2695]</td>
<td>86.5812%</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R_2</td>
<td>[0.440844, 0.495989]</td>
<td>[94.5498, 95.4722]</td>
<td>95.011%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R_3</td>
<td>[0.466256, 0.519511]</td>
<td>[100,100]</td>
<td>100%</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The attributes weight and the importance of each decision maker were applied in the proposed IVHF-GDM method. Finally, the proposed approach was implemented in an illustrative example. The results showed that the third robot was selected as the best robot and the worst robot was the first robot. Also, the comparative analysis which indicated the same ranking results was presented the feasibility and applicability of the proposed IVHF-GDM method. For future direction, the proposed method can be enhanced by proposing a method to determine the experts weights precisely. Also, the preferences and judgments of experts should be aggregated in last steps to pre-
vent the loss of data.

References

ing and Engineering Management. (2014) : IEEE.

Seyed Meysam Mousavi is an Assistant Professor at Department of Industrial Engineering, Faculty of Engineering, Shahed University in Tehran, Iran. He received a PhD degree from the School of Industrial Engineering at University of Tehran, Iran, and is currently a member of Iran’s National Elite Foundation. He is now the head of Industrial Engineering Department at Shahed University and a member of the Iranian Operational Research Association. His main research interests include: cross-docking systems planning, quantitative methods in project management, logistics planning and scheduling, engineering optimization under uncertainty, multiple criteria decision making under uncertainty, and applied soft computing. He has published many papers and book chapters in reputable journals and international conference proceedings.

Behnam Vahdani is an Assistant Professor at Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University in Iran, and is a member of Iran’s National Elite Foundation. His current research interests include: Supply chain network design, facilities planning and design, multi-criteria decision making, uncertain programming, artificial neural networks, meta-heuristics algorithms and operations research applications. He has published numerous papers and book chapters in the aforementioned areas.

Hossein Gitinavard is currently Ph.D student at Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran. He received B.Sc. and M.Sc. degrees from the School of Industrial Engineering, University of Tehran and School of Industrial Engineering, Iran University of Science and Technology, respectively. His main research interests include fuzzy sets theory, multi-criteria decision-making under uncertainty, artificial neural networks and applied operations research. He has published several papers in reputable journals and international conference proceedings.

Hassan Hashemi is currently a Ph.D. student in the Construction Engineering and Management at the School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran. He received M.Sc. degree from the Department of Civil Engineering, University of Zanjan. His main research interests include multi-criteria decision making and applied operations research, soft computing, and project risk management. He is author or co-author of more than 30 scientific papers and book chapters.