Solving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods

M. Jahanshahi *, N. Aliev ‡, F. Jahanshahi §

Received Date: 2017-02-01 Revised Date: 2017-10-11 Accepted Date: 2017-11-22

Abstract

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkho methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the solution and also satisfying the solution in the given P.D.E and satisfying the given initial and boundary conditions are established by complex analysis theory and Countour integral method.

Keywords : Initial-Boundary Value Problem; Laplace Line; Countor Integral; Heat Equation.

1 Introduction

There are several methods to solve the spectral problems which resulted from initial-boundary value problems. As we know from text books, if the operator of spectral problem is self adjoint, then the eigenvalues are real and distinct. Also, the related eigenfunctions are orthogonal and form a complete system of basis. In this case we can apply Fourier method (separation of variables) [1]-[5]. If the related operator is not self adjoint, \(L \neq L^* \), consequently the eigenvalues are repeated (not simple), then we can not apply Fourier method. In this case, the eigenfunctions can not form a complete basis system and we should use Fourier-Birkhoff method which proposed to use the eigenfunctions of related adjoint operator \(L^* \). Because the eigenfunctions of \(L \) and the eigenfunctions of \(L^* \) are biortogonal [6, 7]. In this paper, we will consider some initial-boundary value problems which their related spectral problems are not self adjoint and their eigenvalues are repeated. Other non-classical case for heat equation \(u_t = u_{xx} \), when the related spectral problem has no eigenvalue, and consequently we do not have any eigenfunction. For this, consider the following boundary conditions:

\[
\begin{align*}
 &u(0, t) - 2u(1, t) = 0, \quad t \geq 0 \\
 &u_x(x, t)|_{x=0} + 2u_x(x, t)|_{x=1} = 0
\end{align*}
\]

and with initial condition \(u(x, 0) = \varphi(x) \).

Then the related spectral problem is:

\[
y'' - \lambda^2 y = 0,
\]
\[
\begin{align*}
y(0) - 2y(1) &= 0, \\
y'(0) + 2y'(1) &= 0
\end{align*}
\]

For this problem we have no eigenvalue. Therefore for any \(\lambda \in \mathbb{C} \) the solution is only trivial solution \(y(x) \equiv 0 \), hence we can not establish the seris solution.

Other non-classical case is when the eigenvalues of spectral problem fill the complex plane. In other word, any points of complex plane \(\mathbb{C} \) is an eigenvalue. See the following conditions for heat equation:

\[
\begin{align*}
u(0, t) + u(1, t) &= 0 \\
u_x(x, t)|_{x=0} - u_x(x, t)|_{x=1} &= 0, \quad t \geq 0
\end{align*}
(1.2)
\]

and with initial condition \(u(x, 0) = \varphi(x) \).

Then the related spectral problem is:

\[
y'' - \lambda^2 y = 0, \lambda \in \mathbb{C}, \\
y(0) + y(1) = 0, \\
y'(0) - y'(1) = 0
\]

For these cases, we can not use classical methods such as Fourier method and Fourier- Birkhoff method and Laplace transformation [10]-[12]. These cases can be considered as unsolved problems, see the final section of the paper.

We are going to consider the one-dimensional heat equation with some initial and boundary conditions. For this problem, at first its spectral problem is constructed. Then by contour integral method, an analytic solution will be given as integral form over a suitable contour. Finaly in section 3, we show that this analytic solution satisfies in the given differential equation and given boundary and initial conditions.

2 Main problem and its spectral problem

We consider the following problem for heat equation:

\[
u_t = u_{xx}, \quad x \in (0, 1), \quad t > 0
(2.3)
\]

with boundary conditions and initial condition:

\[
\begin{align*}
u(0, t) &= u(1, t) \\
u_x(x, t)|_{x=0} &= 0, \quad t \geq 0
\end{align*}
(2.4)
\]

\[
u(x, 0) = \varphi(x), \quad x \in [0, 1]
(2.5)
\]

At first we show that the eigenvalues of the spectral problem are repeated. For this, by Fourier method we will have the following spectral problem:

\[
X''(x) - \lambda X(x) = 0, \quad x \in (0, 1) \quad \text{(2.6)}
\]

\[
\begin{align*}
X(0) &= X(1) \\
X'(0) &= 0
\end{align*}
(2.7)
\]

the general solution of equation (2.6) is:

\[
X(x) = c_1 e^{-\sqrt{\lambda} x} + c_2 e^{\sqrt{\lambda} x}
(2.8)
\]

Imposing boundary conditions (2.7) to this solution, yields following algebraic system:

\[
\begin{bmatrix}
c_1 + c_2 - c_1 e^{-\sqrt{\lambda}} - c_2 e^{\sqrt{\lambda}} = 0 \\
-c_1 \sqrt{\lambda} + c_2 \sqrt{\lambda} = 0 \\
1 - e^{-\sqrt{\lambda}} - 1 - e^{\sqrt{\lambda}} \\
-\sqrt{\lambda} \right) = \left(\begin{array}{c}
\sqrt{\lambda} \left(e^{\sqrt{\lambda}} - 1 \right) = 0
\end{array} \right)
\]

We consider the eigenvalue \(\lambda = 0 \) is simple and the eigenvalues \(\lambda_k = -4k^2 \pi^2, k \in \mathbb{N} \) are repeated two times. The eigenvalues and eigenfunctions are as follows:

\[
\begin{align*}
\lambda_0 &= 0, \quad \lambda_0(x) = 1, \\
\lambda_k &= -4k^2 \pi^2, \lambda_k(x) = \frac{1}{\sqrt{2}} \cos 2k\pi x, k \in \mathbb{N}
\end{align*}
\]

Because of eigenvalues are repeated, the eigenfunctions can not establish a complete basis system. And we should use the generalized vectors as extra eigenfunctions. Therefore we can not continue the Fourier method, and we are going to apply Countour integral method. For this, we construct the spectral problem by making use of Laplace transform:

\[
y''(x, \lambda) - \lambda y(x, \lambda) = \varphi(x), \quad x \in (0, 1) \quad \text{(2.9)}
\]

\[
\begin{align*}
\begin{cases}
y(0, \lambda) = y(1, \lambda) \\
y'(0, \lambda) = 0
\end{cases}
\end{align*}
(2.10)
\]

Now, we are going to compute the general solution of non-homogeneous equation (2.9) by Lagrange method (Change variable method), that is:
\[y(x, \lambda) = c_1(x)e^{-\sqrt{\lambda}x} + c_2(x)e^{\sqrt{\lambda}x} \]

(2.11)

where \(c_1(x) \) and \(c_2(x) \) are equal to:

\[
c_1(x) = c_1 - \int_{x_2}^{x} \frac{e^{\sqrt{\lambda}\xi}}{2\sqrt{\lambda}} \varphi(\xi) d\xi,
\]

\[
c_2(x) = c_2 + \int_{x_2}^{x} \frac{e^{-\sqrt{\lambda}\xi}}{2\sqrt{\lambda}} \varphi(\xi) d\xi
\]

where \(c_1, c_2 \) are real arbitrary constants. Now, by considering the parameter \(\lambda \) in complex plane we suppose,

\[\arg\lambda \in (-\pi + \delta, \pi - \delta), \delta > 0, \text{ as is shown in shape 1.} \]

Regarding values for \(\arg\sqrt{\lambda} \), and with in snatches shows the asymptotic line of countour \(L_0 \) [8, 9].

By substituting these values for \(c_1 \) and \(c_2 \) in \(y(x, \lambda) \) we have:

\[
y(x, \lambda) =
\int_{0}^{1} \frac{e^{\sqrt{\lambda}(x+\xi)} - e^{\sqrt{\lambda}(x-\xi)}}{2\sqrt{\lambda}(e^{\sqrt{\lambda}} - 1)^2} \varphi(\xi) d\xi
\]

(2.13)

\[
- \int_{0}^{1} \frac{e^{\sqrt{\lambda}(2-x-\xi)} + e^{-\sqrt{\lambda}(x-\xi)}}{2\sqrt{\lambda}(e^{\sqrt{\lambda}} - 1)^2} \varphi(\xi) d\xi
\]

It is easy to see that the exponential expersions in \(y(x, \lambda) \) tends to zero when \(|\lambda| \to \infty \). Now, we consider the following countour in complex plane such that \(\delta_0 > \delta > 0 \). Line with in snatches shows the asymptotic line of countour \(L_0 \) [8, 9].

By using of inverse transformation of \(y(x, \lambda) \) we get an analytic solution for the main problem:

\[
u(x, t) = -\frac{1}{2\pi i} \int_{L} e^{\lambda t} y(x, \lambda) d\lambda
\]

(2.14)
3 Main Results

Theorem 3.1 Consider the initial-boundary value problem

\[u_t = u_{xx}, \quad x \in (0, 1), \quad t > 0 \] \hspace{1cm} (3.15)

\[\begin{cases}
 u(0, t) = u(1, t) \\
 u_x(x, t)|_{x=0} = 0
\end{cases}, \quad t \geq 0 \] \hspace{1cm} (3.16)

\[u(x, 0) = \varphi(x), \quad x \in [0, 1] \] \hspace{1cm} (3.17)

if the function \(\varphi(x) \) satisfies the following conditions:

\[\varphi(0) = \varphi(1) = 0, \quad \varphi \in C^2(0, 1) \] \hspace{1cm} (3.18)

then this problem has a solution in form of \((2.14)\).

The proof is established in three steps. In first step we show that the solution \((2.14)\) satisfies in the equation \((3.15)\). In the second step we show that the solution \((2.14)\) satisfies in boundary conditions\((3.16)\). In third step we show that the solution \((2.14)\) satisfies in the initial condition \((3.17)\).

Proof:

Step1:

\[u_{xx} - u_t = - \frac{1}{2\pi i} \int_L \lambda e^{\lambda x} \phi(x) d\lambda = - \frac{1}{2\pi i} \int_L e^{\lambda x} \phi(x) d\lambda = - \frac{\varphi(x)}{2\pi i} \int_L e^{\lambda x} d\lambda = 0 \] \hspace{1cm} (3.19)

Since the function \(e^{\lambda x} \) is an analytic function,

that is:

\[\int_{L_\nu - C_\nu} e^{\lambda x} d\lambda = \int_{L_\nu} e^{\lambda x} d\lambda - \int_{C_\nu} e^{\lambda x} d\lambda \] \hspace{1cm} (3.20)

Note that the \(L_\nu - C_\nu \) is a closed countour and \(C_\nu \) is a part of circle with radius \(\gamma_\nu \), then we have:

\[\int_{L_\nu} e^{\lambda x} d\lambda = \int_{C_\nu} e^{\lambda x} d\lambda \] \hspace{1cm} (3.21)

\[\int_L e^{\lambda x} d\lambda = \lim_{\nu \to \infty} \int_{L_\nu} e^{\lambda x} d\lambda = \lim_{\nu \to \infty} \int_{C_\nu} e^{\lambda x} d\lambda = 0 \] \hspace{1cm} (3.22)

Step2: For satisfying boundary conditions, we have:

\[u(0, t) - u(1, t) = \frac{1}{2\pi i} \int_L e^{\lambda x} [y(0, \lambda) - y(1, \lambda)] d\lambda = 0 \] \hspace{1cm} (3.23)

\[u_x(x, t)|_{x=0} = - \frac{1}{2\pi i} \int_L e^{\lambda x} y'(0, \lambda) d\lambda = 0 \] \hspace{1cm} (3.24)

Step3: For satisfying the initial condition \((3.17)\) we use the asymptotic expansion of \(e^{-\sqrt{x} \varphi(t-x)} \).

\[u(x, 0) = \frac{1}{2\pi i} \lim_{t \to 0} \int_L y(x, \lambda) d\lambda \] \hspace{1cm} (3.25)

We can write the second term of solution as the following asymptotic expansion:

\[- \int_0^1 e^{-\sqrt{x} \varphi(t-x)} \varphi(\xi) d\xi \] \hspace{1cm} (3.26)

\[- \frac{1}{2\sqrt{x}} \int_0^x e^{-\sqrt{x} \varphi(t-x)} \varphi(\xi) d\xi \] \hspace{1cm} (3.27)

Now by using part rule of integration in above integrals we have:

\[\int_0^x e^{\sqrt{x} \xi} \varphi(\xi) d\xi = \frac{e^{\sqrt{x} \xi}}{\sqrt{x}} \varphi(\xi)|_0^x - \frac{e^{\sqrt{x} \xi}}{\sqrt{x}} \varphi'(\xi) d\xi = \frac{e^{\sqrt{x} \xi}}{\sqrt{x}} \varphi(x) - \frac{\varphi(0)}{\sqrt{x}} - \frac{1}{\sqrt{x}} \int_0^x e^{\sqrt{x} \xi} \varphi'(\xi) d\xi \] \hspace{1cm} (3.28)

For second integral we also have:

\[\int_0^1 e^{-\sqrt{x} \xi} \varphi(\xi) d\xi = \] \hspace{1cm} (3.29)
\[
e^{\frac{\sqrt{x}}{2\lambda}} \int_0^x e^{\sqrt{\xi}} \phi' (\xi) d\xi - \frac{e^{\sqrt{x}}}{2\lambda} \int_x^1 e^{-\sqrt{\xi}} \phi' (\xi) d\xi
\]

Since eigenvalues in negative part of real axes are distinctly and discrete, hence we can choose the countour \(C_\nu \) such that this countour dose not contain any eigenvalue, therefore:

\[
\lim_{\nu \to \infty} \int_{C_\nu} e^{\lambda x} y(x, \lambda) d\lambda = 0 \quad (3.30)
\]

Finally we have:

\[
u(x, 0) = -\frac{1}{2\pi i} \lim_{\nu \to \infty} \lim_{t \to 0} \int_{L_\nu - C_\nu} e^{\lambda x} y(x, \lambda) d\lambda = \nu(x, 0) = \frac{-1}{2\pi i} \lim_{\nu \to \infty} \lim_{t \to 0} \int_{L_\nu - C_\nu} \left[-\frac{\varphi(x)}{\lambda} + \frac{\varphi(0)}{2\lambda} e^{-\sqrt{x}} + \frac{\varphi(1)}{2\lambda} e^{-\sqrt{1-x}} + \frac{e^{-\sqrt{x}}}{2\lambda} \int_{0}^{x} e^{\sqrt{\xi}} \phi' (\xi) d\xi - \frac{e^{\sqrt{x}}}{2\lambda} \int_{1}^{x} e^{-\sqrt{\xi}} \phi' (\xi) d\xi\right] d\lambda
\]

According to the conditions (3.18), we have:

\[
u(x, 0) = \varphi(x) \lim_{\nu \to \infty} \lim_{t \to 0} \int_{L_\nu - C_\nu} \frac{d\lambda}{\lambda} = \varphi(x) \quad (3.32)
\]

4 Unsolved Problems

As mentioned in introduction, when the eigenvalues fill the complex plane or the case that there is no eigenvalue, we should use the countor integral method. Apply this method for the following problems:

Problem1: \(u_t = u_{xx}, \quad x \in (0, 1), \quad t > 0 \)

\[
(4.1) \quad \begin{cases} u(0, t) - 2u(1, t) = 0, \\ u_x(x, t)|_{x=0} + 2u_x(x, t)|_{x=1} = 0, \end{cases} \quad t \geq 0
\]

Problem2: \(u_t = u_{xx}, \quad x \in (0, 1), \quad t > 0 \)

\[
(4.2) \quad \begin{cases} u(0, t) + u(1, t) = 0, \\ u_x(x, t)|_{x=0} - u_x(x, t)|_{x=1} = 0, \end{cases} \quad t \geq 0
\]

With initial condition \(u(x, 0) = \varphi(x) \)

Problem3: \(u_{tt} = u_{xx}, \quad x \in (0, 1), t \in (0, T) \)

\[
\frac{\partial^k u(x, t)}{\partial t^k}|_{t=0} = \varphi_k(x), \quad x \in [0, 1], \quad k = 0, 1
\]

5 Conclusion

We applied the contour integral method to solve non-classical cases of these problems. We showed that the spectral problem had repeated eigenvalues and consequently the eigenfunctions can not establish a complete basis system. We also shown that the resulted analytic solution satisfied in given differential equation and given initial and boundary condition. We can apply same method for solving more spectral problems which their eigenvalues are repeated such as one and two dimensional wave equation and Steklov problem for Laplace and Helmholtz equation.

References

Mohammad Jahanshahi has got PhD degree from Tarbiat Modares University, Tehran in 2000 and now he is the Full Professor at the department of mathematics at Azarbaijan Shahid Madani University, Tabriz, Iran. His Research interests include study of existence and uniqueness of solution of initial and boundary value problems including ordinary and partial differential equations.

Since September 2016, Fatemeh Jahanshahi is a Ph.D. Student in the field of applied mathematics (differential equations) at Azarbaijan Shahid Madani University. She is currently working on spectral and countour integral methods for solving initial and boundary value problems including ordinary and partial fractional differential equations under the supervision of Prof. M. Jahanshahi.

From 2007 year returned to Azerbaijan and continue to work as professor in Aplied mathematics and cybernetics department of Baku State University.