Solving Volterra’s Population Model via Rational Christov Functions
Collocation Method

K. Parand *,†, E. Hajizadeh ‡, A. Jahangiri §, S. Khaleqi ¶

Received Date: 2015-12-07 Revised Date: 2016-04-26 Accepted Date: 2017-09-17

Abstract

The present study is an attempt to find a solution for Volterra’s Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra’s model is a nonlinear integro-differential equation. First, the Volterra’s Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested in terms of RES error and compare the obtained results with some well-known results. The numerical results obtained show that the proposed method produces a convergent solution.

Keywords: Volterra’s Population Model; Collocation Method; Rational Christov Functions; Nonlinear ODE.

1 Introduction

Many problems arising in science and engineering are set in unbounded domain. Spectral methods have been successfully applied in the approximation of ordinary differential equations (ODEs) defined in unbounded domains in recent years[17, 18, 13, 15, 20].

1.1 Spectral Methods

Different spectral methods can be applied to solve ODEs in unbounded domains. The first approach using orthogonal functions over the unbounded domains were Sinc, Hermite and Laguerre polynomials [9]. The second approach is to reformulate original problems in unbounded domains to singular problems in bounded domains by variable transformations, and then to use suitable Jacobi polynomials to approximate the resulting singular problems [10]. The third approach is to replacing infinite domain with [−L, L] and semi-infinite interval with [0, L] by choosing L, sufficiently large. This method is named as domain truncation [4]. The fourth approach for solving such problems is based on Rational approximations. Christov[6] and Boyd[2, 3] developed some spectral methods on unbounded intervals by using mutually orthogonal systems of rational functions. Boyd [3] defined a new spectral basis, named rational Chebyshev functions on the semi-infinite interval, by suitable mapping to the Chebyshev polynomials. Guo and Shen [11] proposed and analyzed a set of Legendre rational functions which are mutually orthogonal in

1.2 Volterra’s Population Model

Attempts to explain the balance of nature through mathematics began to appear around the turn of the century. A simple set of differential equations to describe malaria epidemics was proposed by Ross [23]. Martini improved these equations by allowing for the immunity of individuals who had recovered from infection [8]. The Volterra model for population growth of a species within a closed system is given in [24, 26, 28] as:

\[
\frac{du}{dt} = u - u^2 - u \int_0^t u(x)dx, \quad u(0) = u_0 \quad (1.1)
\]

where \(u(t)\) is the scaled population of identical individuals at a time \(t\), and \(\kappa = \frac{a}{m}\) is a prescribed non-dimensional parameter. Moreover, \(a > 0\) is the birth rate coefficient, \(b > 0\) is the crowding coefficient, and \(c > 0\) is the toxicity coefficient. The coefficient \(c\) indicates the essential behavior of the population evolution before its level falls to zero in the long term. One may show that the only equilibrium solution of (1.1) is the trivial solution \(u(t) = 0\). Furthermore, the analytical solution [25]

\[
\begin{align*}
\frac{du}{dt} &= u_0 \exp \left( \frac{1}{\kappa} \int_0^t \left[ 1 - u(\tau) - \int_0^\tau u(x)dx \right]d\tau \right), \\
(1.2)
\end{align*}
\]

shows that \(u(t) > 0\) for all \(u_0 > 0\) [22].

The solution of Eq. (1.1) has been considerable concerned. Although a closed form solution was achieved in [25, 26], it was formally shown that the closed form solution cannot lead to any insight into the behavior of the population evolution [28]. Some approximate and numerical solutions for Volterra’s population model have been reported. In Ref. [24], the successive approximations method was offered for the solution of Eq. 1.1, but was not implemented. In [25], the singular perturbation method for Volterra’s population model is considered. It is shown in [25] that for the case \(\kappa << 1\), where populations are weakly sensitive to toxins, a rapid rise occurs along the logistic curve that will reach a peak and be followed by a slow exponential decay. And, for \(\kappa\) large, where populations are strongly sensitive to toxins, the solution is proportional to \(sech^2(t)\). In this case the solution \(u(t)\) has a smaller amplitude compared to the amplitude of \(u(t)\) for the case \(\kappa << 1\). In [26], three numerical algorithms, namely the Euler method, the modified Euler method and a fourth order Runge-Kutta method, have been used for Eq. 1.1. Recently, some researchers employed spectral methods to solve Volterra’s Population Model for example [22, 16] and, some researchers have used the analytical methods for approximating this problem [28, 12].

In the present paper, we utilized Christov functions to solve Volterra’s Population Model by collocation method.

The rest of this paper is organized as follows: In Section 2, the researchers have described rational Christov functions. In section 3, Volterra’s Population Model has converted to a nonlinear ordinary differential equation (ODE). In section 4, the presented method has applied to solve Volterra’s Population Model. The researchers have shown the approximate solutions and compared it with other results. The last part of this study described several concluding remarks.

2 Rational Christov functions

The system

\[
\rho_n = \frac{1}{\sqrt{\pi}} \frac{(ix - 1)^n}{(ix + 1)^{n+1}} , \quad n = 0, 1, 2... , i = \sqrt{-1},
\]

was introduced by Wiener as Fourier transform of the Laguerre functions (functions of parabolic cylinder). Higgins defined it also for negative indices \(n\) and proved its completeness and orthogonality [7]. Christov invented a new system, the new system is comprised a two real-valued subsequences of odd functions \(S_n\) and even functions \(C_n\) with asymptotic behavior \(x^{-1}\) and \(x^{-2}\) respectively, namely [6, 7]:

\[
S_n = \frac{\rho_n + \rho_{n-1}}{i \sqrt{2}}, \quad n = 0, 1, 2... , \quad (2.4)
\]

\[
C_n = \frac{\rho_n - \rho_{n-1}}{\sqrt{2}}, \quad n = 0, 1, 2... . \quad (2.5)
\]

Both sequences are orthonormal and each member of (2.4) is orthogonal to all members
of (2.5); each member of (2.5) is also orthogonal to all members of (2.4). It is worth mentioning that (2.4) and (2.5) can be defined for negative \( n \) through the relations [6]

\[
S_{-n} = S_{n-1} \quad \text{and} \quad C_{-n} = -C_{n-1}.
\]

The functions \( S_n \) and \( C_n \) can be easily expressed in an explicit way [6]:

\[
S_n = \sqrt{\frac{2}{\pi}} \sum_{k=1}^{n+1} \frac{x^{2k-1}(-1)^{n+k}2^{2n+1}}{(2k-1)(x^2+1)^{n+1}} \quad (2.7)
\]

\[
C_n = \sqrt{\frac{2}{\pi}} \sum_{k=1}^{n+1} \frac{x^{2k-2}(-1)^{n+k+1}2^{2n+1}}{(2k-2)(x^2+1)^{n+1}} \quad (2.8)
\]

For more details and explanation about Christov Functions and its properties, see [6, 17].

### 2.1 Function Approximation

For any function, \( f \) in \( L^2(-\infty, \infty) \) can be written as follows:

\[
f(x) = \sum_{i=0}^{\infty} a_i \phi_i(x), \quad (2.9)
\]

where \( \phi_i \) is the \( C_n \) or \( S_n \) function. The function \( f \) can be expanded as follows [7]:

\[
f(x) = \sum_{i=0}^{\infty} (a_i C_i(x) + b_i S_i(x)) \quad (2.10)
\]

If the infinite series in Eq (2.9,2.10) is truncated with \( N \) terms, then it can be written as follows [27]:

\[
f_N(x) \simeq \sum_{i=0}^{N} a_i \phi_i(x) \quad (2.11)
\]

\[
f_N(x) \simeq \sum_{i=0}^{N} (a_i C_i(x) + b_i S_i(x)) \quad (2.12)
\]

where \( \phi_i \) is the \( C_n \) or \( S_n \) function.

### 3 Converting Volterra’s Population Model to a Nonlinear ODE

The researchers convert Volterra’s Population Model in Eq (1.1) to an equivalent nonlinear ordinary differential equation, let:

\[
y(x) = \int_0^x u(t)dt, \quad (3.13)
\]

this leads to:

\[
y'(x) = u(x), \quad (3.14)
y''(x) = u'(x). \quad (3.15)
\]

inserting Eqs. (3.13, 3.14, 3.15) into Eq (1.1) yields the nonlinear differential equation

\[
\kappa y''(x) = y'(x) - (y'(x))^2 - y(x)y'(x), \quad (3.16)
\]

with initial conditions:

\[
y(0) = 0, \quad y'(0) = u_0, \quad (3.17)
\]

obtained via Eqs. (3.13) and (3.14) respectively [22].

### 4 Solving Problem

In this section, we try to solve Volterra’s Population Model by using collocation method. We multiply series (2.12) to \( x^2 \), and also we construct a function \( p(x) \) to satisfy the conditions (3.17), given by

\[
p(x) = u_0x \quad (4.18)
\]

Therefore, the approximate solution of \( y(x) \), to solve Eq (3.16) with conditions, Eq (3.17), become:

\[
\tilde{y}(x) = u_0x + x^2 \sum_{i=0}^{N} (a_i C_i(x) + b_i S_i(x)) \quad (4.19)
\]

Hence, \( \tilde{y}(0) = 0 \) and \( \frac{d\tilde{y}(x)}{dx} = u(0) \).

We construct the residual function by substituting \( y(x) \) by \( \tilde{y}(x) \) in Eq.(3.16)

\[
Res(x) = \kappa \frac{d^2\tilde{y}(x)}{dx^2} - \frac{d\tilde{y}(x)}{dx} + \left(\frac{d\tilde{y}(x)}{dx}\right)^2 + \tilde{y}(x)\frac{d\tilde{y}(x)}{dx}. \quad (4.20)
\]

A method for forcing the residual function (4.20) to zero is Collocation algorithm. With collocating \( \{x_k\}_{k=0}^{2N+1} \) to residual function (4.20), we have \( 2N + 2 \) equations and \( 2N + 2 \) unknown coefficients (spectral coefficients), in all of spectral methods, the purpose is to find these coefficients. In shape of algorithmic for solving equation (3.16), we do [19]:

BEGIN
1. Input \( N \).
The researchers solve the Eq. (4.19) with $u_0 = 0.1$ and $\kappa = 0.04, 0.1, 0.2, 0.5$, and also evaluate important values $u_{max}$. Table 1 represents the obtained values by present method with results obtained in [28, 22], and compare $u_{max}$ with exact values obtained by [26]:

$$u_{max} = 1 + \kappa \ln(\frac{\kappa}{1 + \kappa - u_0}).$$ (4.21)

| $\kappa$ | Exact $u_{max}$ | $N=4$ Presented method $|Res(x)|^2$ | $N=5$ Presented method $|Res(x)|^2$ |
|---|---|---|---|
| 0.04 | 0.873719 | 0.7998379 | 1.81e-3 | 0.829863 | 1.80e-4 |
| 0.10 | 0.769741 | 0.7569857 | 5.72e-4 | 0.768735 | 4.55e-7 |
| 0.20 | 0.659050 | 0.6590674 | 3.64e-7 | 0.659057 | 9.84e-8 |
| 0.50 | 0.485190 | 0.4851861 | 2.90e-7 | 0.485190 | 1.55e-7 |

| $\kappa$ | Exact $u_{max}$ | $N=6$ Presented method $|Res(x)|^2$ | $N=7$ Presented method $|Res(x)|^2$ |
|---|---|---|---|
| 0.04 | 0.873719 | 0.872953 | 5.18e-5 | 0.873408 | 7.64e-7 |
| 0.10 | 0.769741 | 0.768926 | 3.45e-7 | 0.769488 | 6.37e-8 |
| 0.20 | 0.659050 | 0.659050 | 2.18e-8 | 0.659050 | 7.23e-10 |
| 0.50 | 0.485190 | 0.485190 | 1.01e-9 | 0.485190 | 1.72e-11 |

2. Construct the series (2.12)

3. Construct the Eq. (4.19) to satisfy conditions (3.17)

4. Construct the Residual function (4.20) by substituting $y(x)$ by Eq. (4.19) in Eq. (3.16)

5. Choice $\{x_i\}, i = 0, 1,..., 2N+1$ as collocation points.

6. By substituting collocation points in $Res(x; a_0, a_1,..., a_n, b_0, b_1,..., b_n)$, we construct a system containing $2N+2$ equations.

7. By solving obtained system of equations in step 6, via Newton’s method and gain the $a_n, b_n$ $n = 0,1,..., N$.

28, 22, 14

Table 2: A comparison of method in [22, 28, 14] and the present method with the exact values for $u_{max}$.

<table>
<thead>
<tr>
<th>$\kappa$</th>
<th>$N$</th>
<th>Exact $u_{max}$</th>
<th>Present method</th>
<th>ADM[28]</th>
<th>TAU[22]</th>
<th>GA-IRBF [14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>7</td>
<td>0.873719</td>
<td>0.873408</td>
<td>0.861240</td>
<td>0.873708</td>
<td>0.873719</td>
</tr>
<tr>
<td>0.10</td>
<td>7</td>
<td>0.769741</td>
<td>0.769488</td>
<td>0.765113</td>
<td>0.769734</td>
<td>0.769741</td>
</tr>
<tr>
<td>0.20</td>
<td>6</td>
<td>0.659050</td>
<td>0.659060</td>
<td>0.657912</td>
<td>0.659045</td>
<td>0.659050</td>
</tr>
<tr>
<td>0.50</td>
<td>5</td>
<td>0.485190</td>
<td>0.485190</td>
<td>0.485282</td>
<td>0.485188</td>
<td>0.485190</td>
</tr>
</tbody>
</table>

Figure 1: Graph of the approximated $y(x)$ of Volterra’s Population Model (ODE), with data in Table 1, and rational Christov functions basis function.

5 Conclusion

In this paper, the researchers converted integro-ordinary differential equation to a nonlinear ordinary differential equation (ODE). The method used in this study was rational Christov functions. This method solved the problem on the infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. Additionally, through the comparison with other methods, we have shown that the both of the presented ap-
approaches have good reliability and efficiency.

References


